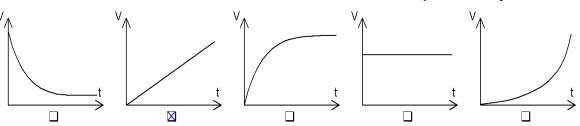

GEIPI-POLYTECH v1 ©EXATECH										
Nom de famille : (Suivi, s'il y a lieu, du nom d'usage)	Ш									
Prénom(s) :										
Numéro Candidat :					Né(e) le :		$/\Box$			
(Le numéro est celui qui figure sur la convocation ou la feuille d'émargement)										
 Remplir soigneusement, sur CHAQUE feuille officielle, la zone d'identification en MAJUSCULES. Ne pas signer la composition et ne pas y apporter de signe distinctif. Rédiger avec un stylo à encre foncée (bleue ou noire); éviter le stylo plume à encre noire. N'effectuer aucun collage ou découpage de sujets ou de feuille officielle. Ne joindre aucun brouillon. 										

Document réponses Physique-Chimie EXERCICE I

EXERCICE I									
I-1-	Sens: \square \overrightarrow{E}_1 \boxtimes \overrightarrow{E}_2		I-2- P	olarité :	☐ Positi	ve 🗵 Négative			
I-3-	2^{e} loi de Newton : $m\vec{a}=q\vec{E}$								
I-4-	Composantes vecteur accélération :	$\mathbf{a}_{\mathbf{x}} = \frac{qE}{m}$		$a_y = 0$					
I-5-	Composantes vecteur vitesse :	$\mathbf{v}_{\mathbf{x}} = \frac{qE}{m}t$	$v_y = v_0$						
I-6-	Evolution de la norme :		□b	□ c □	ld ⊠	e □f			
I-7-	Equations horaires :	$x = \frac{qE}{2m}t^2$	2		y = -	$v_0 t$			
I-8-	Equation de la trajectoire : $y = \sqrt{\frac{2 m x v_0^2}{qE}}$								
I-9-	I-9- Expr. Litt. : $\mathbf{y}_{\text{C}} = \sqrt{\frac{2m d v_0^2}{qE}}$ Appl. Num. : \mathbf{y}								
 I-10- Choisir la bonne réponse □ Si la masse de la particule double, alors la hauteur de C double aussi □ Si la masse de la particule double, alors la particule mettra 4 fois plus de temps pour arriver en C □ Pour une même particule, si sa vitesse initiale est 4 fois plus grande, alors le point C est 2 fois plus haut. □ Si le champ électrique est 4 fois plus petit, la particule met deux fois plus de temps pour arriver en C. □ Si le champ électrique est 4 fois plus grand, la hauteur du point C sera deux fois plus grande 									
EXERCICE II									
II-1-	Représentation de Lewis :	I	II-2- pH = 13.7						
II-3-	Sens de parcours	I	II-4-						
	© ° +		Electrode	Polarité	Gaz dégagée	Transformation			
			Anode	+	O ₂	Oxydation			
	— Na+ HO⁻ — →		Cathode	-	H ₂	Réduction			



II-5-b
$$n(H_2) = \frac{Q}{2F} = \frac{Q}{2e N_A}$$

II-5-c
$$n(H_2) = 3.11 \times 10^{-2} \text{ mol}$$

II-6-

(cocher la réponse exacte)

II-7- Masse:
$$m(H_2O) = 9 \text{ tonnes}$$

EXERCICE III

Intensité : $\mathbf{i(t)} = \frac{dq}{dt}$ III-1III-2- Relation : $\mathbf{q} = \mathbf{C} \mathbf{u}_{c}$

III-3-

(cocher la réponse exacte)

$$\Box \frac{du_c}{dt} - \frac{1}{\tau} u_c = E$$

$$\Box \frac{du_c}{dt} + \tau u_c = E$$

$$\Box \frac{du_c}{dt} + \frac{1}{\tau} u_c = E$$

$$\Box \frac{du_c}{dt} - \frac{1}{\tau}u_c = E \qquad \qquad \Box \frac{du_c}{dt} + \tau u_c = E \qquad \qquad \Box \frac{du_c}{dt} + \frac{1}{\tau}u_c = E \qquad \qquad \Box \frac{du_c}{dt} + \frac{1}{\tau}u_c = 0$$

$$\boxtimes \frac{du_c}{dt} + \frac{1}{\tau}u_c = \frac{E}{\tau} \qquad \qquad \Box \frac{du_c}{dt} - \frac{1}{\tau}u_c = \frac{E}{\tau} \qquad \qquad \Box \frac{1}{\tau}\frac{du_c}{dt} + u_c = E \qquad \qquad \Box \frac{du_c}{dt} - \frac{1}{\tau}u_c = 0$$

 \Box C

$$\Box \frac{du_c}{dt} - \frac{1}{\tau} u_c = \frac{E}{\tau}$$

 $\square \Omega$

$$\Box_{\tau}^{\frac{1}{d}} \frac{du_c}{dt} + u_c = E$$

$$\Box \frac{du_c}{dt} - \frac{1}{\tau} u_c = 0$$

III-4-Unité de τ : \Box V

(cocher la réponse exacte)

 \Box F

 \boxtimes s

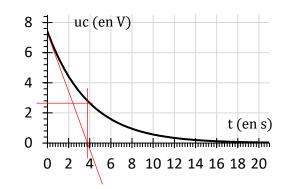
III-6valeur maximale : $U_{c,max} = E$

 \square V-1 \square C-1 \square F-1 \square A-1 \square Ω -1 \square s-1

III-5-Courbe a

☐ Courbe b ⊠ Courbe c

 \Box A


III-7-Explication du tracé:

> Méthode 1 : tracé de la tangente à l'origine et intersection avec l'axe des abscisses.

Ou

Méthode 2 : valeur de t lorsque $u_c = 0.37 \times 7.4$ = 2,7 V, intersection avec la courbe.

$$au_{exp} = 3.9 \text{ s}$$

III-8- Expr. Litt. :
$$A = \frac{VR}{\tau}$$

Appl. Num. :
$$A = 5.70 \ 10^{-4}$$
 L/nF