REPONSES A L'EXERCICE I de Mathématiques Spécialité

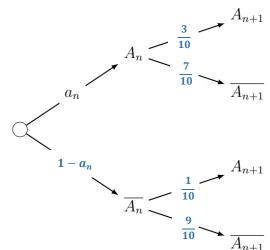
I-1-
$$a_1 = \frac{1}{5}$$
.

I-3-
$$P(A_{n+1} \cap A_n) = \frac{3}{10} a_n$$
.

$$P(A_{n+1} \cap \overline{A_n}) = \frac{1}{10}(1 - a_n).$$

I-4-
$$a_{n+1} = \frac{1}{5}a_n + \frac{1}{10}$$
. En effet:

$$a_{n+1} = P(A_{n+1}) = P(A_{n+1} \cap A_n) + P(A_{n+1} \cap \overline{A_n})$$
$$= \frac{3}{10}a_n + \frac{1}{10}(1 - a_n) = \frac{1}{5}a_n + \frac{1}{10}.$$



I-5-a-
$$u_1 = \frac{1}{5} - \frac{1}{8} = \frac{3}{40}$$

I-5-b- La suite
$$(u_n)_{n\geq 1}$$
 est une suite géométrique de raison $q=\frac{1}{5}$.

En effet:
$$u_{n+1} = a_{n+1} - \frac{1}{8} = \frac{1}{5}a_n + \frac{1}{10} - \frac{1}{8} = \frac{1}{5}\left(u_n + \frac{1}{8}\right) - \frac{1}{40} = \frac{1}{5}u_n + \frac{1}{40} - \frac{1}{40} = \frac{1}{5}u_n$$
.

I-6-a- Pour tout entier naturel
$$n$$
 non nul, $u_n = \frac{3}{40} \left(\frac{1}{5}\right)^{n-1} = \frac{3}{8} \left(\frac{1}{5}\right)^n$.

I-6-b- Pour tout entier naturel *n* non nul,
$$a_n = \frac{3}{8 \times 5^n} + \frac{1}{8}$$

En effet:
$$a_n = u_n + \frac{1}{8} = \frac{3}{8} \left(\frac{1}{5}\right)^n + \frac{1}{8} = \frac{3}{8 \times 5^n} + \frac{1}{8}$$

I-7- La suite
$$(a_n)_{n\geq 1}$$
 est convergente de limite $l=\frac{1}{8}$

En effet:
$$0 < \frac{1}{5} < 1 \text{ donc } \lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0 \text{ donc } \lim_{n \to +\infty} \frac{3}{8} \left(\frac{1}{5}\right)^n + \frac{1}{8} = \frac{1}{8}$$
.

I-8-a- Pour tout entier naturel
$$n$$
 non nul, $a_n > \frac{1}{8}$.

En effet : Pour tout entier naturel n non nul, $\frac{3}{8} \left(\frac{1}{5}\right)^n > 0$.

I-8-b-
$$n_0 = 7$$

En effet :
$$a_n - \frac{1}{8} < 10^{-5} \Leftrightarrow \frac{3}{8} \left(\frac{1}{5}\right)^n < 10^{-5}$$

$$\Leftrightarrow \left(\frac{1}{5}\right)^n < \frac{8}{3} 10^{-5}$$

$$\Leftrightarrow n \ln \left(\frac{1}{5}\right) < \ln \left(\frac{8}{3} 10^{-5}\right)$$

$$\Leftrightarrow n > \frac{\ln \left(\frac{8}{3} 10^{-5}\right)}{\ln \left(\frac{1}{5}\right)} \operatorname{car} \ln \left(\frac{1}{5}\right) < 0. \operatorname{Or} \frac{\ln \left(\frac{8}{3} 10^{-5}\right)}{\ln \left(\frac{1}{5}\right)} \approx 6,54.$$

REPONSES A L'EXERCICE II de Mathématiques Spécialité

II-1- L'ensemble des solutions de l'équation $X^2 - 4X + 2 = 0$ est $\{2 - \sqrt{2}; 2 + \sqrt{2}\}$.

En effet : $\Delta = (-4)^2 - 4 \times 2 = 8$. Donc l'équation admet deux solutions réelles :

$$X_1 = \frac{4-2\sqrt{2}}{2} = 2 - \sqrt{2} \text{ et } X_2 = \frac{4+2\sqrt{2}}{2} = 2 + \sqrt{2}.$$

II-2-

 $J(2; 1; -\sqrt{3})$ $L(2; 1; \sqrt{3})$ II-3-a- $\lambda = \frac{a}{4}$ b- A) segment [AE] B) droite (AE) C) cercle de diamètre [AE] D) plan de II-3-bvecteur normal \overrightarrow{AE}

 $IL^2 = (2-a)^2 + 1 + \sqrt{3}^2.$ II-4- $IJ^2 = (2-a)^2 + 1 + (-\sqrt{3})^2$.

II-5-a- m = 1 n = -4

En effet: $\overrightarrow{II} \cdot \overrightarrow{IL} = (2-a)^2 + 1^2 - \sqrt{3}^2 = 4 - 4a + a^2 + 1 - 3 = a^2 - 4a + 2$.

II-5-b- Les vecteurs \overrightarrow{IJ} et \overrightarrow{IL} sont orthogonaux si et seulement si $a \in \{2 - \sqrt{2}; 2 + \sqrt{2}\}$.

II-6-a- Les points *I*, *I* et *L* définissent un plan.

En effet : Les vecteurs \overrightarrow{II} et \overrightarrow{IL} sont non nuls (car $1 \neq 0$) et orthogonaux donc non colinéaires.

II-6-b- Le vecteur \vec{n} (1; $\sqrt{2}$; 0) est normal au plan (*IJL*).

En effet : $\vec{n} \cdot \vec{I}\vec{J} = \begin{pmatrix} 1 \\ \sqrt{2} \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -\sqrt{2} \\ 1 \\ -\sqrt{3} \end{pmatrix} = -\sqrt{2} + \sqrt{2} = 0$ donc \vec{n} est orthogonal à $\vec{I}\vec{J}$. $\vec{n} \cdot \vec{I}\vec{L} = \begin{pmatrix} 1 \\ \sqrt{2} \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -\sqrt{2} \\ 1 \\ \sqrt{3} \end{pmatrix} = -\sqrt{2} + \sqrt{2} = 0$ donc \vec{n} est orthogonal à $\vec{I}\vec{L}$.

Le vecteur \vec{n} est orthogonal à deux vecteurs non colinéaires du plan (IJL) donc il est normal au plan (IJL).

II-6-c- Une équation cartésienne du plan (*IJL*) est $x + \sqrt{2}y - 2 - \sqrt{2} = 0$

En effet : Le vecteur \vec{n} (1 ; $\sqrt{2}$; 0) est normal au plan (IJL) donc une équation cartésienne de (IIL) est de la forme : $x + \sqrt{2}y + d = 0$.

De plus, $I(2+\sqrt{2};0;0)\in (IJL)$ donc ses coordonnées vérifient l'équation cartésienne du plan et on a $x_1 + y_1 + d = 0 \iff 2 + \sqrt{2} + d = 0 \iff d = -2 - \sqrt{2}.$

Donc une équation cartésienne du plan (*IJL*) est $x + \sqrt{2}y - 2 - \sqrt{2} = 0$.

Une représentation paramétrique de la droite (*CG*) est $\begin{cases} x = t \\ y = 2; t \in \mathbb{R}. \end{cases}$ II-7-

 $K(2-\sqrt{2})$; 2). En effet : $K = (CG) \cap (IJL)$. Ses coordonnées vérifient donc le II-8système:

$$\begin{cases} x = t \\ y = 2 \\ z = 0 \\ x + \sqrt{2}y - 2 - \sqrt{2} = 0 \end{cases} \Leftrightarrow \begin{cases} x = t \\ y = 2 \\ z = 0 \\ t + 2\sqrt{2} - 2 - \sqrt{2} = 0 \end{cases} \Leftrightarrow \begin{cases} x = 2 - \sqrt{2} \\ y = 2 \\ z = 0 \\ t = 2 - \sqrt{2} \end{cases}.$$

II-9-Le quadrilatère IJKL est un carré.