

5 mai 2018

EPREUVE DE MATHEMATIQUES

Consignes aux candidats

Durée de l'épreuve : 1h30

Vous devez commencer par <u>remplir la partie administrative de votre fiche optique</u>, avec indication de votre nom, prénom, et en cochant les cases de votre identifiant personnel : le numéro QCM.

- L'épreuve de Mathématiques se déroule sur 1h30 et est constituée de 6 questions obligatoires et de 6 questions à choisir parmi les questions numérotées de 7 à 14.
- Chaque question comporte cinq propositions : A, B, C, D, E.
- Pour chaque question :
 - Vous cochez la (ou les) case(s) V de la fiche optique correspondant à toute proposition que vous jugez vraie.
 - Vous cochez la (ou les) case(s) **F** de la fiche optique correspondant à toute proposition que vous jugez fausse.
 - Les cinq propositions peuvent être toutes vraies ou toutes fausses
- Toute case correctement remplie entraîne une bonification. Toute erreur est pénalisée. Il est donc préféré une absence de réponse à une réponse inexacte.
- <u>Seule la fiche optique</u> est ramassée en fin d'épreuve.

LES CALCULATRICES NE SONT PAS AUTORISÉES

Vérifiez que votre épreuve est constituée de 4 pages numérotées de 1 à 4. Dans le cas contraire, demandez un nouveau sujet.

Concours Advance 5 mai 2018

ÉPREUVE DE MATHÉMATIQUES

Durée : 1 h 30

Questions obligatoires

1. (A)
$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 + 2x - 3} = +\infty$$

(B)
$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$$

(C)
$$\lim_{x \to 0} \frac{2x - 1}{x^2} = -\infty$$

(D)
$$\lim_{x \to 0} e^{\frac{\ln(1+x)}{x}} = e$$

(E)
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = 1$$

2. (A) Si
$$f(x) = -3x^4 + 2x^2 + 1$$
 alors $f'(x) = -12x^3 + 4x + 1$

(B) Si
$$f(x) = 2x^3 + x + \frac{4}{x^2}$$
 alors $f'(x) = 6x^2 + 1 + \frac{4}{x^3}$

(C) Si
$$f(x) = \frac{x^2 + x - 1}{x + 1}$$
 alors $f'(x) = \frac{x^2 + 2x + 2}{(x + 1)^2}$

(D) Si
$$f(x) = \frac{\ln(x)}{e^x}$$
 alors $f'(x) = \frac{1 - x \ln(x)}{xe^x}$

(E) Si
$$f(x) = \cos^2(x)$$
 alors $f'(x) = -\sin(2x)$

3. Soit f la fonction dérivable sur $]0,+\infty[$ définie par $f(x)=x-\ln(x^2).$ On donne $\ln(2)\approx 0,69.$

(A)
$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$$

(B)
$$\lim_{x \to +\infty} f(x) = +\infty$$

(C)
$$f$$
 est croissante sur $]0, +\infty[$

(D)
$$f'(1) = 0$$

(E) Pour tout
$$x \in]0, +\infty[, f(x) \ge 0]$$

4. Soit f la fonction dérivable sur $]0, +\infty[$ définie par $f(x) = e^{x+\ln(x)}$.

(A)
$$f(1) = e$$

(B) Pour tout
$$x \in]0, +\infty[, f(x) = e^x + x]$$

(C)
$$f$$
 est croissante sur $]0, +\infty[$

(D) Pour tout
$$x \in]0, +\infty[, f'(x) = (x+1)e^x]$$

(E)
$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = 1$$

5. Soit f la fonction dérivable sur $\mathbb{R}\setminus\{0\}$ définie par $f(x)=\frac{e^x-3}{e^x-1}$.

(A)
$$\lim_{x \to +\infty} f(x) = 1$$

(B)
$$\lim_{x \to -\infty} f(x) = 1$$

(C)
$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty$$

(D) Pour tout
$$x \in \mathbb{R} \setminus \{0\}$$
, $f'(x) = \frac{2}{(e^x - 1)^2}$

(E)
$$f$$
 est croissante sur $]0, +\infty[$

6. Soit f une fonction définie sur $\mathbb R$. On considère que les 3 énoncés suivants sont vrais :

$$P_1$$
: Si $f(0) = 1$ et $f(1) \neq 2$ alors $f(2) = 3$

$$P_2$$
: Si $f(2) = 3$ ou $f(3) \neq 4$ alors $f(0) \neq 1$

$$P_3 : \text{Si } f(1) = 2 \text{ alors } f(3) \neq 4$$

(A)
$$P_2$$
 est équivalent à : Si $f(0) = 1$ alors $f(2) \neq 3$ ou $f(3) = 4$

(B) Si
$$f(0) = 1$$
 alors $f(2) \neq 3$

(C) On peut avoir
$$f(0) = 1$$
 et $f(1) \neq 2$

(D) On peut avoir
$$f(0) = 1$$
 et $f(1) = 2$

(E) On peut affirmer que
$$f(0) \neq 1$$

Questions à choisir

7. Soit $q \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $S_n = 1 + q + q^2 + \dots + q^n = \sum_{k=0}^n q^k$.

(A) Pour tout
$$n \ge 1$$
, $\sum_{k=1}^{n} q^k = S_n - 1$

(B) Pour tout
$$n \ge 1$$
, $\sum_{k=1}^{n} q^k = qS_{n-1}$

(C) Si
$$q = 1$$
 alors pour tout $n \in \mathbb{N}$, $S_n = n$

(D) Si
$$q=-1$$
 alors pour tout $n\in\mathbb{N},\,S_n=0$

(E) Si
$$q \in]-1,1[$$
 alors $\lim_{n \to +\infty} S_n = \frac{1}{1-q}$

- 8. Soit (u_n) définie par $u_0 > 0$ et pour tout $n \in \mathbb{N}, \ u_{n+1} = u_n e^{-u_n}$.
 - (A) (u_n) est une suite géométrique
 - (B) (u_n) est croissante
 - (C) Pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} \leqslant 1$
 - (D) $\lim_{n \to +\infty} u_n = 1$
 - (E) $\lim_{n \to +\infty} u_n = 0$
- 9. (A) $\int_0^{\frac{\pi}{2}} \cos\left(3x \frac{\pi}{2}\right) dx = 1$
 - (B) $\int_0^{\frac{\pi}{2}} \sin(3x) \, \mathrm{d}x = \frac{1}{3}$
 - (C) $\int_0^{\frac{\pi}{4}} \frac{1}{\cos^2(x)} \, \mathrm{d}x = 1 \sqrt{2}$
 - (D) $\int_0^{\frac{\pi}{4}} (1 + \tan^2(x)) dx = 1$
 - (E) $\int_0^{\frac{\pi}{4}} \tan(x) \, \mathrm{d}x = 1$
- 10. Pour un nombre complexe z, Re(z) désigne sa partie réelle, Im(z) sa partie imaginaire. Soit S l'ensemble des solutions de l'équation complexe : z + |z| = 1 + 2i.
 - (A) Si $z \in S$ alors $z \notin \mathbb{R}$
 - (B) Si $z \in S$ alors Im(z) = 2
 - (C) Si $z \in S$ alors $|z| \geqslant 2$
 - (D) Si $z \in S$ alors $\text{Re}(z) \geqslant -1$
 - (E) $S = \{-1 + 2i\}$
- 11. (A) $\frac{1+2i}{2+i}$ est imaginaire pur
 - (B) $\frac{1+2i}{2-i}$ est imaginaire pur
 - (C) $\frac{1-2i}{2+i}$ est réel
 - $(D) \left| \frac{1+2i}{2+i} \right| = 1$
 - $(E) \left| \frac{1+2i}{2-i} \right| = 1$

12. Dans l'espace rapporté à un repère orthonormé $\left(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$, on considère les points $I(3, -2, 2), \ J(6, 1, 5), \ K(6, -2, -1)$ et L(0, 4, -1).

(A)
$$\overrightarrow{IJ}.\overrightarrow{IK} = 0$$

(B) Le triangle (IJK) est rectangle

(C)
$$KL^2 = KI^2 + IL^2$$

(D) Le triangle (IKL) est rectangle

(E) Le triangle
$$(IJL)$$
 est rectangle

13. La durée de vie, en années, d'un composant électronique est une variable aléatoire T qui suit une loi exponentielle de paramètre $\lambda > 0$. On note f la fonction densité associée à T et on rappelle que pour tout $t \ge 0$ $f(t) = \lambda e^{-\lambda t}$.

(A)
$$P(T \le 5) = \lambda (1 - e^{-5\lambda})$$

(B) Si
$$P(T \leqslant 5) = 0.9$$
 alors $\lambda = \frac{\ln(10)}{5}$

(C) La probabilité que le composant ne fonctionne plus au bout de 5 ans, sachant qu'il fonctionne depuis 2 ans, est $P(2 \le T \le 5)$

(D) La probabilité que le composant ait une durée de vie supérieure à 5 ans, sachant qu'il fonctionne depuis 2 ans, est $\frac{P(T\geqslant 5)}{P(T\geqslant 2)}$

(E) Si l'espérance de T est 5 alors $\lambda=5$

14. Soit la fonction $f(x) = x^3 - 3x + 1$, qui a 3 racines réelles dans]-2, 2[dont une seule dans]1, 2[. On note α la racine dans]1, 2[. Pour avoir une valeur approchée de α on utilise l'algorithme suivant :

Entrées : Donner les valeurs de a, b, N

Variables: x réel, i entier

Traitement : Pour i allant de 1 à N

$$x \leftarrow a - \frac{b - a}{f(b) - f(a)} f(a)$$

Si
$$f(a)f(x) > 0$$

$$a \leftarrow x$$

Sinon

$$b \leftarrow x$$

Fin Si

Fin Pour

Sortie: Afficher x

(A) L'algorithme est basé sur le théorème des valeurs intermédiaires

(B) Dans l'algorithme, x est l'abscisse du point intersection d'une droite avec l'axe des abscisses

(C) Pour obtenir une valeur approchée de α , on peut donner en entrées pour a et b: a = 0 et b = 2

(D) Les entrées (a = 1, b = 2, N = 10) et (a = 2, b = 1, N = 10) donneront la même sortie

(E) On peut remplacer la boucle « Pour i allant de 1 à N » par une boucle conditionnelle « Tant que $(b-a) > 10^{-N}$ »

CORRIGÉ DU SUJET OFFICIEL

DE L'ÉPREUVE DE MATHÉMATIQUES

	Α	В	С	D	E
1	F	V	V	V	F
2	F	F	V	V	V
3	V	V	F	F	V
4	V	F	V	V	F
5	V	F	V	F	V
6	F	V	F	F	V
7	V	V	F	F	V
8	F	F	V	F	V
9	F	V	F	V	F
10	V	V	V	F	F
11	F	V	F	V	V
12	V	V	V	V	V
13	F	V	F	V	F
14	V	V	F	V	V