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Fiche méthode Sciences physiques

Dérivées en physique

On ne traite ici que le cas des fonctions à une seule variable.

I Dérivée première

Rappel : qu’est-ce qu’une dérivée en

mathématique?

La dérivée d’une fonction x → f(x) prise

en x = a correspond à la limite du taux de

variation de f au voisinage de x = a :

f ′(a) = lim
∆x→0

[

f(a+∆x)− f(a)

(a+∆x)− a

]

= lim
∆x→0

[

f(a+∆x)− f(a)

∆x

]

R f ′(a) est la pente de la tangente à la courbe de f en x = a.

Notation de la dérivée première

f ′(a) = lim
∆x→0

(

∆f

∆x

)

x=a

=

(

df

dx

)

x=a

le "d" représentant une différence infinitésimale :

– pour "dx" : différence entre deux valeurs de x infiniment proches au voisinage de a,

– pour "df" : différence entre entre les deux valeurs de f correspondantes

Pour désigner plus généralement la fonction f ′ :

f ′ =
df

dx

R L’intérêt de cette notation est de garder à l’esprit qu’une dérivée est un taux de variation "limite".

Conséquence : variation infinitésimale de f On pourra écrire : df = f ′(x) dx ce qui signifie qu’à une

variation infiniment petite (ou infinitésimale) dx de la variable x correspond une variation infinitési-

male df = f ′(x) dx de la fonction f .

R
d.

dx
correspond à l’opérateur "dérivée par rapport à x"
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II Dérivée seconde

Notation de la dérivée seconde

La dérivée seconde d’une fonction correspond à deux dérivations successives, donc on applique deux fois

l’opérateur dérivée
d.

dx
:

f ′′(a) =

[

d

dx

(

df

dx

)]

x=a

que l’on notera plus simplement : f ′′(a) =

(

d2f

dx2

)

x=a

Ou encore, pour désigner plus généralement la fonction f ′′ : f ′′ =
d2f

dx2

III Généralisation
Dans le programme de physique de classe préparatoire, on aura rarement l’occasion d’aller au delà de la dérivée

seconde. Mais néanmoins, on peut généraliser de la manière suivante :

Notation de la dérivée nième

f (n)(a) =

(

dnf

dxn

)

x=a

f (n) =
dnf

dxn

Autre notation

Si y est une fonction de la variable temporelle t, on pourra noter ses dérivées successives : ẏ, ÿ, ...

IV Dérivée de vecteur
Pour exprimer la variation d’un vecteur par rapport au temps par exemple (ou tout autre variable), on pourra

utiliser la même définition que précédemment.

Différence cruciale et fondamentale avec la dérivée d’une fonction scalaire :

Il faut préciser par rapport à quel référentiel on évalue la dérivée d’un vecteur ! !

Exemple : imaginons une flèche disposée sur un manège et symbolisant un vecteur
−→
V (donc de norme constante

ici). Alors, du point de vue d’un observateur fixe sur le manège :
(

d
−→
V

dt

)

Rmanege

= 0

car de son point de vue, la flèche ne change ni de norme, ni de direction, ni de sens. C’est donc un vecteur

constant.

Mais pour un observateur fixe sur le sol à côté du manège :
(

d
−→
V

dt

)

Rsol

6= 0

car de son point de vue, même si la norme est constante, le vecteur change en permanence de direction, donc

c’est un vecteur non-constant.
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Fiche méthode Sciences physiques

Notion d’intégrale en physique

Dans cette fiche, nous expliquons comment un physicien "voit" l’intégrale.
Pour cela, partons d’un exemple simple.

1 . Position du problème

On considère une voiture avançant en ligne droite avec une accélération constante de norme a0. À l’instant initial
t = t0, elle possède une vitesse nulle. v évolue donc linéairement avec le temps : v(t) = a0(t− t0).

On se demande quelle est la distance D parcourue au bout d’une durée τ .

Si la voiture avançait à vitesse constante v0, la réponse serait simple : D = v0τ . Mais justement, la vitesse n’est

pas constante ici, on ne peut donc pas utiliser cette relation.

2 . Discrétisation

On découpe le parcours en N petit parcours de durée ∆t =
τ

N
chacun.

On définit alors les instants : tk = t0 + k∆t, où k est un entier compris entre 1 et N .

Pour estimer D approximativement, on considère qu’entre tk−1 et tk , la vitesse reste constante et vaut v(tk−1).

Alors, la durée Dk parcourue sur cet intervalle de temps est : Dk = v(tk−1).∆t

Par cette méthode, on en déduit approximativement la distance totale :

D ≃ D1 +D2 + ...+Dn =
N
∑

k=1

Dk =
N
∑

k=1

v(tk−1).∆t

Interprétation géométrique

Effectuer la somme :

D ≃

N
∑

k=1

Dk =

N
∑

k=1

v(tk−1).∆t

revient donc à calculer la somme des aires de
chaque rectangle bleu sous la courbe de v(t).

3 . Passage à la limite

Le résultat sera d’autant moins approximatif que la segmentation est fine. Il faut donc passer à la limiteN →∞

et donc ∆t→ 0 :
N
∑

k=1

v(tk−1).∆t −→
∆t→0

D

On admet également que :
N
∑

k=1

v(tk−1).∆t −→
∆t→0

∫ t0+τ

t0

v(t)dt
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Ce sera démontré en cours de mathématique de deuxième semestre.

Donc, par unicité de la limite : D =

∫ t0+τ

t0

v(t)dt

En passant à la limite, on dit que l’on passe d’une somme discrète de contributions Dk à une somme

continue et infinie de contributions élémentaires δD = v(t)dt, où dt représente une variation infinitési-

male du temps :

D =

∫ t0+τ

t0

δD =

∫ t0+τ

t0

v(t)dt

Interprétation géométrique

En passant à la limite ∆t→ 0 et N →∞, D tend à devenir exactement l’aire sous la courbe de v(t) entre
t0 et t0 + τ .

R Dans l’exemple précédent, il n’y a plus qu’à terminer le calcul intégral, sachant v(t) = a0(t− t0) :

D =

∫

t0+τ

t0

a0(t− t0)dt =
[a0

2
t2 − a0t

]t0+τ

t0

= ...

Méthode : calcul intégral

Pour les questions du type "calculer la quantité G entre les valeurs x1 et x2 de la variable du problème" :

Méthode Exemple

1. Exprimer la contribution élé-

mentaire δG que l’on peut asso-

cier à G en fonction de la varia-

tion infinitésimale de la variable

du problème, dx :

δG = f(x)dx

On cherche la quantité totale de charge Q qui peut être débitée

par une batterie dont l’intensité varie suivant :

i(t) = I0e
−t/τ , τ et I0 étant constants

La quantité élémentaire de charge δQ débitée entre t et t + dt

vaut par définition :

δQ = i(t)dt

2. Exprimer G comme la somme

continue des contributions élé-

mentaires δG :

G =

∫ x2

x1

δG =

∫ x2

x1

f(x) dx

Ici, les deux bornes d’intégrations sont l’instant initial t = 0 (où

la pile commence à débiter) et t→∞ (la pile arrête de débiter,

càd intensité nulle, lorsque t→∞). D’où :

Q =

∫

∞

0
δQ =

∫

∞

0
i(t)dt =

∫

∞

0
I0e

−t/τdt

3. Faire le calcul de l’intégrale

Q =
[

−I0τe
−t/τ

]∞

0
= I0τ
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Fiche méthode Sciences physiques

Résoudre une équation
différentielle du premier ordre

I Équations différentielles du 1er ordre sans second membre

Forme de l’équation et solution générale

• En physique, on rencontre souvent ce type d’équation qui se met sous la forme : f ′ + λf = 0 où f est

une fonction de la variable t, et λ est une constante.

En notation différentielle, elle s’écrit :
df

dt
+ λf = 0

• La solution est du type f(t) = Ke−λt où K est une constante que l’on détermine à l’aide des

conditions initiales données.

R Pour vérifier que l’on n’a pas fait d’erreur de signe, dans l’argument de l’exponentielle notamment, on peut
tester rapidement la solution en vérifiant que f ′ + λf vaut bien 0 .

– Qu’est-ce que λ ? =⇒ constante reliée aux paramètres physiques intervenant dans la situation physique

étudiée.

(exemple du circuit RC : on définit λ =
1

τ
=

1

RC
)

– Comment déterminer la constanteK ?=⇒ elle semble arbitraire, mais en pratique sa valeur est imposée car

initialement (càd, à t = 0) l’expérimentateur applique une contrainte f0 au système physique : f0 = f(t = 0)
. On utilise cette égalité pour déterminer la valeur deK.

Si la variable est le temps t, on parle alors de condition(s) initiale(s).

Si la variable est une variable spatiale, on parlera plutôt de condition aux limites ...

Méthode : Comment retrouver rapidement la solution générale ?

f ′ + λf = 0 ⇒ f ′ = −λf ⇒
f ′

f
= −λ

Donc les primitives de
f ′

f
sont égales à celles de −λ à une constante près

Une primitive connue de
f ′

f
est ln f .

Pour la fonction constante égale à −λ, on peut choisir la primitive −λx.

Donc :

ln f(x) = −λx+ C

où C est une constante.

Pour remonter à l’expression de f , il suffit d’appliquer la fonction réciproque du logarithme, càd, la fonction

exponentielle :

f(x) = e−λx+C = e−λx × eC

Comme C est une constante, on peut définir la constanteK = eC , de sorte que : f(x) = Ke−λx
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II Équations différentielles du 1er ordre avec second membre

Forme de l’équation et solution générale

• Se met sous la forme :

f ′ + λf = g

où g est une fonction connue.

• La solution est du type f(t) = Ke−λt + solution particulière où K est une constante que l’on

détermine à l’aide des conditions initiales données.

Il faut donc connaître une fonction qui soit solution particulière de l’équation (n’importe laquelle convien-

dra).

R On dit que "la solution générale d’une équation différentielle linéaire est la somme d’une solution
particulière et de la solution générale de l’équation homogène associée (càd, équation sans second membre
correspondante)".

R Si la fonction g est constante, une solution particulière très simple est : fpart =
1

λ
g

On se trouvera majoritairement dans ce type de cas.

R Si la fonction g n’est pas une constante, chercher une solution particulière qui a la même forme que g.

En physique, en général, ce genre de situation se présentera uniquement lorsque g sera de type sinusoïdal :
g(t) = A sin(ωt+ ϕ)

Il faudra alors chercher une solution fpart également sous forme sinusoïdale : fpart(t) = A′ sin(ωt+ φ)
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Fiche méthode Sciences physiques

Projections de vecteurs

I Rappel : produit scalaire

Produit scalaire entre deux vecteurs
−→
A .
−→
B = ||

−→
A || × ||

−→
B || × cos(

−→
A,
−→
B )

Application aux vecteurs d’une base orthonormée

−→ux .
−→ux = 1 −→ux .

−→uy = 0
−→uy .

−→uy = 1 −→ux .
−→uz = 0

−→uz .
−→uz = 1 −→uy .

−→uz = 0

R Les vecteurs d’une base orthonormée sont de norme 1 et orthogonaux entre eux.

Bilinéarité du produit scalaire

Soient λ et µ deux réels. Alors :

−→
A . (λ

−→
B + µ

−→
C ) = λ

−→
A .
−→
B + µ

−→
A .
−→
C

II Projection d’un vecteur dans une base orthonormée

Projection d’un vecteur dans une base orthonormée

Dans une base orthonormée ( ) notée (−→ux,
−→uy,
−→uz) , supposons que le vecteur

−→
A se décompose de la

manière suivante dans cette base :

−→
A = ax

−→ux + ay
−→uy + az

−→uz =





ax
ay
az





En utilisant la bilinéarité du produit scalaire, on obtient alors :











−→
A .−→ux = ax
−→
A .−→uy = ay
−→
A .−→uz = az

Utilisation d’une base orthonormée pour exprimer un produit scalaire

De même, par bilinéarité du produit scalaire :

−→
A .
−→
B = axbx + ayby + azbz
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Fiche méthode Sciences physiques

Bases de projection et
coordonnées

I Choix de la base de projection
Une base de projection est un outil permettant de projeter des équations vectorielles pour obtenir un en-

semble d’équations scalaires plus faciles à manipuler.

En physique, on choisira toujours des bases orthonormées directes car plus simple à utiliser.

Une fois que le référentiel a été choisi pour rendre l’étude du mouvement la plus simple possible, il faut

choisir une base de projection : notamment, celle dans laquelle les vecteurs vitesse et accélération s’ex-

primeront de la manière la plus simple possible.

ATTENTION ! ! !

Ne pas confondre "base de projection" et "référentiel"

Dans un référentiel d’étude donné, on peut choisir n’importe quelle base de projection.

II Une base fixe : les coordonnées cartésiennes
C’est la base la plus naturelle.

Elle est constituée d’un point fixe et de vecteurs unitaires fixes dans le référentiel d’étude choisi.

Base FIXE (−→ux,−→uy,−→uz)

Coordonnées deM(t) (x(t), y(t), z(t))

Vecteur position
−−→
OM = x−→ux + y−→uy + z−→uz =







x

y

z







Déplacement élémentaire

d
−−→
OM = dx−→ux + dy−→uy + dz−→uz =







dx

dy

dz







Vitesse −→v = ẋ−→ux + ẏ−→uy + ż−→uz =







ẋ

ẏ

ż







Accélération −→a = ẍ−→ux + ÿ−→uy + z̈−→uz =







ẍ

ÿ

z̈






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III Une base mobile : les coordonnées cylindriques (ou cylindro-
polaires)
Cette base mobile dépend directement de la position du pointM étudié.

Base MOBILE (−→ur(M),−→uθ(M),−→uz)

Coordonnées deM(t) (r(t), θ(t), z(t))

Vecteur position
−−→
OM = r−→ur + z−→uz

Déplacement élémentaire d
−−→
OM = dr−→ur + rdθ−→uθ + dz−→uz

Vitesse −→v = ṙ−→ur + rθ̇−→uθ + ż−→uz

Accélération
−→a =

(

r̈ − rθ̇2
)

−→ur +
(

2ṙθ̇ + rθ̈
)

−→uθ +

z̈−→uz

R Le vecteur −→uθ est défini à posteriori de telle sorte à ce que (−→ur,
−→uθ,
−→uz) forme une base vectorielle directe.

Cas d’un mouvement circulaire uniforme

autour de l’axe (Oz) de rayon R constant de vitesse angulaire constante θ̇ = Ω :

−→v = RΩ−→uθ , −→a = −RΩ2−→ur =
−v2

R
−→ur

Formules importantes à connaître et à savoir retrouver

d−→ur

dθ
= −→uθ

d−→ur

dt
= θ̇−→uθ

d−→uθ

dθ
= −−→ur

d−→uθ

dt
= −θ̇−→ur

Ici, les dérivées s’effectuent par rapport à une base cartésienne fixe (O,−→ux,
−→uy,
−→uz)

R Coordonnées polaires

Lorsque le mouvement est plan, s’effectuant à z constant, on parlera plutôt de base polaire (O,−→ur,
−→uθ)

et de coordonnées polaires (r, θ) . (Par exemple, pour un mouvement circulaire...)
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Fiche méthode Sciences physiques

Notions de base de cinématique

I Relativité du mouvement - Notion de référentiel

La nature d’un mouvement dépend toujours de la situation de celui qui l’observe !

Il faudra donc toujours préciser le référentiel dans lequel est étudié le mouvement.

Définition

On appelle référentiel, un système d’axes lié à un observateur, ce dernier

étant muni d’une horloge. On peut ainsi repérer et suivre l’évolution de la

position du point matériel dans l’espace au cours du temps.

R Par définition, l’observateur est immobile dans ce référentiel.

Choix du référentiel d’étude

Pour étudier le mouvement d’un mobile, le référentiel d’étude doit être choisi de manière à ce que le

mouvement puisse être décrit de la manière la plus simple possible.

Par exemple, pour le mouvement des planètes, on se placera dans le référentiel héliocentrique. Pour le

mouvement des satellites terrestres, on se placera dans le référentiel géocentrique. Pour étudier la chute

d’une pomme, on se placera dans le référentiel terrestre. Etc.

II Description du mouvement dans un référentiel donné
II.1 Vecteur position et vecteur déplacement élémentaire

Le vecteur position
−−→
OM(t)) permet de donner la position de

M au cours du temps par rapport au point O, considéré fixe dans le

référentiel d’étude.

Entre deux instants infiniment proches t et t+ dt, le vecteur dépla-

cement élémentaire donne le déplacement infinitésimal du point

M entre ces deux instants :

vecteur déplacement élémentaire =
−−−−−−−−−−→
M(t)M(t+ dt)

On remarque que si O est un point fixe du référentiel considéré :
−−−−−−−−−−→
M(t)M(t+ dt) =

−−−−−−−−→
OM(t+ dt)−

−−−−→
OM(t) = variation infinitésimale du vecteur

−−→
OM = d

−−→
OM(t)

Donc,
−−−−−−−−−−→
M(t)M(t+ dt) = d

−−→
OM(t)

R Le point fixe choisi n’est pas nécessairement l’origine du repère dans lequel on travaille, mais ce sera
généralement le cas ...
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II.2 Vecteur vitesse

Par définition, le vecteur vitesse du point matériel évalué

à l’instant t dans le référentielR est :

−→v /R(t) =

(−−−−−−−−−−→
M(t)M(t+ dt)

dt

)

R

Si O est un point fixe dansR :

−→v (t) =

(

d
−−→
OM(t)

dt

)

R

Si il n’y a pas d’ambiguïté concernant le référentiel utilisé, on pourra alléger la notation :

−→v (t) =

−−−−−−−−−−→
M(t)M(t+ dt)

dt
=

d
−−→
OM(t)

dt

Propriétés

• On peut écrire :
−−−−−−−−−−→
M(t)M(t+ dt) = d

−−→
OM = −→v dt

• −→v (t) est toujours tangent à la trajectoire au point M(t)

• −→v est indépendant du point fixe choisi.

En prenant deux points fixe O et O′, on montre aisément :
d
−−→
OM

dt
=

d
−−−→
O

′
M

dt

II.3 Vecteur accélération

Par définition, le vecteur accélération du point matériel

évalué à l’instant t dans le référentielR est :

−→a /R(t) =

(

d−→v /R(t)

dt

)

R

Si O est un point fixe dansR :

−→a (t) =

(

d2
−−→
OM(t)

dt2

)

R

Si il n’y a pas d’ambiguïté concernant le référentiel utilisé, on pourra alléger la notation :

−→a (t) =
d−→v (t)

dt
=

d2
−−→
OM(t)

dt2

On montre aisément (comme pour −→v ) que −→a est indépendant du point fixe choisi.

II.4 Quelques définitions

Trajectoire du mouvement : courbe reliant les positions successives de M .

L’équation horaire du mouvement donne le vecteur position
−−→
OM(t) à chaque instant.

Il ne faut pas confondre équation de la trajectoire et équation horaire du mouve-

ment.

Si on connait l’équation horaire du mouvement, on peut en déduire l’équation de la

trajectoire, mais la réciproque est fausse.

Mouvement uniforme : ||−→v || = cte

On n’a pas nécessairement : −→v =
−−−−−−→
constant : pour un mouvement uniforme, la

norme de −→v est constante mais la direction de −→v peut varier (exemple du mouvement

circulaire uniforme)
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Fiche méthode Sciences physiques

Tension et courant électrique

I La tension électrique

On appelle tension, ou différence de potentiel, la grandeur mesurée par un

voltmètre entre deux points A et B. Elle s’exprime en volt (V).

On note les tensions avec la lettre U et les potentiels avec la lettre V .

La tension UAB mesurée entre deux points A et B d’un conducteur est :

UAB = VA − VB

Sur un schéma, on symbolise la tension UAB par une flèche allant de B vers A.

Physiquement, une tension électrique est représentative d’une force qui tend à déplacer les porteurs

de charges (les électrons dans le cas des métaux, les ions dans le cas d’une solution, etc) dans un sens ou

dans l’autre suivant le signe des charges.

Cette force est appliquée à l’aide d’un champ électrique provenant d’un générateur.

Orientation d’une tension

Pour étudier un dipôle AB, on peut tout aussi bien définir sa tension U par U = UAB ou U = UBA, c’est

un choix arbitraire qui ne changera en rien les résultats physiques.

R Il faudra être vigilant et penser à adapter l’utilisation des relations courant-tensions suivant les choix
effectués. Se reporter notamment à la fiche "Convention récepteur et générateur".

Par exemple, la loi d’Ohm en convention récepteur est U = Ri. Mais si on choisit de l’étudier en inversant
le sens de la tension, donc en convention générateur, alors il faudra écrire : −U = Ri
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II Le courant électrique
L’effet d’une tension étant de déplacer les porteurs de charges, il en résulte un mouvement global de ces porteurs

qu’on appelle courant électrique.

Sens du courant

Par définition, le sens du courant est le sens dans

lequel se déplaceraient des charges positives ce

qui équivaut au sens inverse du déplacement des

charges négatives.

Sens conventionnel du courant i

R Le sens conventionnel du courant est un choix arbitraire au même titre que l’orientation des axes d’un
repère pour positionner un point dans l’espace.
Ci-dessus, on a choisi de l’orienter de A vers B (i = iA→B) mais on aurait pu faire le choix inverse.

R Le sens conventionnel du courant est algébrique : on n’a donc pas besoin d’indiquer constamment le sens
réel du courant dès lors que celui-ci nous est indiqué par le signe mathématique du sens conventionnel.

Intensité du courant

Si pendant un intervalle de temps dt, la section du conducteur est traversée suivant le sens conventionnel

du courant par une quantité algébrique de charges δq, alors l’intensité du courant électrique vaut :

i =
δq

dt

porteurs de charges

positives se déplaçant

dans le sens convention-

nel du courant

Donc : δq > 0

porteurs de charges

positives se déplaçant

dans le sens contraire

au sens conventionnel

du courant

Donc : δq < 0

Donc : i =
δq

dt
> 0 Donc : i =

δq

dt
< 0

porteurs de charges né-

gatives se déplaçant

dans le sens contraire

au sens conventionnel

du courant

Donc : δq > 0

porteurs de charges né-

gatives se déplaçant

dans le sens convention-

nel du courant

Donc : δq < 0

Donc : i =
δq

dt
> 0 Donc : i =

δq

dt
< 0
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Fiche méthode Sciences physiques

Loi des mailles et loi des nœuds

1. Loi des mailles

On choisit arbitrairement un sens de rotation dans la maille

ABCDE. Si une tension d’une des branches de la maille est

orientée dans le même sens de rotation, on l’affecte d’un signe +,

sinon d’un signe − .

La somme des tensions des branches affectées de leur signe est

égale à 0 :

U1 − U2 − U3 + U4 + U5 = 0

R La loi des mailles est une conséquence de l’additivité des tensions.

R Sur le schéma ci-contre, on peut très bien
appliquer la loi des mailles sur la "grande
maille" sans avoir à se préoccuper de la
branche AB :

u1 + u2 − u3 − u4 + u5 − u6 = 0

2. Loi des nœuds

On affecte d’un signe + les courants qui arrivent vers le nœud N ,

et d’un signe − ceux qui en partent.

La somme des intensités affectées de leur signe est égale à 0 :

i1 + i2 − i3 + i4 − i5 = 0

Autre formulation possible et plus facile :

somme des courants arrivant en N = somme des courants repartant de N

ici : i1 + i2 + i4 = i3 + i5

R La loi des nœuds est une conséquence de la conservation de la charge.
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Puissance et énergie échangées

par un dipôle

I Puissance d’un dipôle - conventions générateur et récep-

teur
Le sens conventionnel du courant traversant un dipôle ainsi que l’orientation de la tension à ses bornes relevant

d’un choix arbitraire, il existe deux types de conventions possibles pour décrire un dipôle.

Elles sont liées aux notions de puissance reçue Pr par le dipôle de la part du reste du ciricuit, et de puissance

cédée Pc par le dipôle au reste du circuit, et qui est l’opposé de la puissance reçue.

Convention récepteur Convention générateur

tension × intensité = puissance reçue tension × intensité = puissance cédée

Puissance reçue : Pr = u i

Puissance cédée : Pc = −u i
Puissance cédée : Pc = u i

Puissance reçue : Pr = −u i

II Caractère générateur ou récepteur d’un dipôle

– Un dipôle se comporte comme un récepteur si Pr > 0 (Donc, si Pc < 0)

– Un dipôle se comporte comme un générateur si Pc > 0 (Donc, si Pr < 0)

NE PAS CONFONDRE "convention générateur (resp. récepteur)" et "caractère générateur (resp. récepteur)" ! !

Ce n’est pas parce qu’un dipôle est représenté en convention générateur (resp. récepteur) qu’il se comporte

nécessairement comme un générateur (resp. récepteur) ! !

R Une résistance R vérifie la loi d’Ohm, en convention récepteur : u = Ri.
Donc Pr = Ri2, la puissance reçue est toujours positive. Une résistance se comporte donc toujours comme
un récepteur.

Ce n’est pas le cas des condensateurs et des bobines qui peuvent aussi bien se comporter comme des
générateurs que comme des récepteurs.
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III Relation entre puissance et énergie

Puissance reçue et énergie reçue

Pour un dipôle recevant la quantité élémentaire d’énergie δW pendant un intervalle de temps dt,

la puissance reçue est :

Pr =
δW

dt

Donc : δW = Prdt

L’énergie totale reçue par un dipôle entre deux instants t1 et t2 est donc :

W =

∫

t2

t1

δW =

∫

t2

t1

Prdt

Si le dipôle est en convention récepteur, alors : W =

∫

t2

t1

uidt.

Énergie fournie par un dipôle

Comme il s’agit de grandeurs algébriques, l’énergie fournie par un dipôle est l’opposée de

l’énergie reçue :

énergie fournie = −

∫

t2

t1

Prdt =

∫

t2

t1

Pcdt

Si le dipôle est en convention générateur, alors : énergie fournie =

∫

t2

t1

uidt.
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Fiche méthode Sciences physiques

Dipôles passifs

Résistor de résistance R

Relation courant tension en convention récepteur :

u = Ri

Puissance reçue à : Pr = u× i = Ri2 =
u2

R
> 0

Bobine d’inductance L

Relation courant tension en convention récepteur :

u = L
di

dt

Puissance reçue : Pr = Li
di

dt
=

dEL

dt
où : EL(t) =

1

2
Li2 énergie stockée à t

R La puissance Pr =
dEL

dt
ne pouvant être infinie, cela implique que EL est une fonction continue du

temps. Donc i(t) est une fonction continue du temps pour une bobine.

Condensateur de capité C

Un condensateur de capacité C est tel que q = Cu .

Cela sera surtout exploitable avec la définition de l’intensité : i =
δQ

dt

Pour le condensateur, la quantité de charge δQ reçue pendant dt est égale à la

variation de la charge q(t) : δQ = q(t+ dt)− q(t) = dq

Donc i =
dq

dt
. D’où la relation courant tension en convention récepteur :

i = C
du

dt

Puissance reçue : Pr = Cu
du

dt
=

dEC

dt
où : EC(t) =

1

2
Cu2 énergie stockée à t

R La puissance Pr =
dEC

dt
ne pouvant être infinie, cela implique que EC est une fonction continue du

temps. Donc u(t) est une fonction continue du temps pour un condensateur.
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Modèles de Thévenin et Norton

I Sources idéales de tension de courant

Source de tension Source de courant

II Modèle de Thévenin et Norton
Généralement, les générateurs réels ne sont pas idéaux et ont une caractéristique affine (ou, au moins, une portion

de leur caractéristique) :

R Puisqu’il s’agit d’un générateur, on utilise naturellement la convention générateur.

Il y a deux manières équivalentes d’écrire l’équation de cette caractéristique, d’où deux modèles possibles

permettant de représenter le générateur :

u = E −Ri i =
E

R
−

1

R
u = I0 −

1

R
u où : I0 =

E

R

Modèle correspondant : modèle de Thévenin Modèle correspondant : modèle de Norton
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Déterminer une tension ou

intensité

On rencontre souvent ce type de question :

"Déterminer la tension u aux bornes du dipôle D"

ou alors : "Déterminer l’intensité i traversant le dipôle D"

où D peut être n’importe quel type de dipôle linéaire (résistor,

condensateur, bobine ou générateur linéaire) et les circuits annexes

sont également constitués de dipôles linéaires.

1ère méthode (HP) : ramener le circuit à une seule maille
Cette méthode marche uniquement lorsque les dipôles passifs présents dans les circuits annexes sont des résistors

(les autres dipôles étant soit des sources de tension, soit des sources de courant).

Méthode

1. Simplifier le circuit jusqu’à aboutir à un générateur de Thévenin unique alimentant le dipôle D.

Pour cela :

(a) soit utiliser les règles d’associations des résistances

et des générateurs linéaires.

Lors de la simplification du circuit, il faut

bien sûr laisser intacte la branche contenant D !

(b) soit utiliser le théorème de Thévenin.

2. Appliquer la loi des mailles pour déterminer u. Se servir de la relation courant-tension du dipôle

D pour déterminer i.

Si D est un résistor de résistance R, on peut aussi directement appliquer la formule du pont

diviseur de tension :

u =
R

R+Req

Eeq

R On peut aussi se ramener à un générateur de Norton à l’aide de
l’équivalence Thévenin-Norton.
Dans ce cas, utiliser la loi des noeuds, pour déterminer i et la
relation courant-tension pour déterminer u.

Si D est un résistor de résistance R de conductance G = 1/R,

on peut aussi directement appliquer la formule du pont diviseur

de courant : i =
G

G+Geq

Ieq
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2ème méthode : utilisation de la loi des mailles et la loi des

nœuds

Cette méthode se base sur le fait qu’il faut autant d’équations que d’inconnues. La loi des mailles, la loi des

nœuds et les relations courant-tension des dipôles sont autant d’équations qu’il est possible d’écrire. Mais il ne
faut pas tomber dans le piège d’introduire une intensité inconnue sur chaque branche et une tension inconnue
aux bornes de chaque dipôle : cela ferait écrire trop d’équations à résoudre et la clarté du raisonnement en pâtira,
sans compter le risque accru de faire des erreurs de calcul.

Il vaut donc mieux introduire des inconnues au fur et à mesure lorsque cela est vraiment nécessaire et avancer
méthodiquement pas à pas en suivant la méthode ci-dessous :

Méthode

1. Appliquer la loi des nœuds autant de fois que possible.
Lors de cette étape, on introduira au fur et à mesure des intensités inconnues sur les branches du
circuit en appliquant successivement la loi des nœuds directement sur le schéma du circuit, afin de ne
pas avoir à introduire des intensités inconnues "superflues" :

2. Appliquer la loi des mailles.

Attention : certaines lois des mailles ne sont pas utiles. C’est le cas lorsque l’on l’applique

sur une maille englobant deux autres plus petites : la relation obtenue n’est que la somme des deux

relations que l’on obtient en appliquant la loi sur les deux petites mailles, et n’apporte donc pas de

nouvelle "information"...

Pour ne pas avoir à définir des tensions inconnues aux bornes de chaque dipôle, si cela alourdit

trop le raisonnement, on peut utiliser simultanément les relations courant-tension des dipôles lors

de l’application de la loi des mailles.

3. Utiliser les relations courant-tension des dipôles.

Faire attention à la convention utilisée !

Ne pas oublier que l’on connaît la relation courant-tension du dipôle D, donc on connaît une

équation supplémentaire reliant i et u.

4. On dispose alors d’un système d’équations.

Vérifier qu’il y a autant d’équations que d’inconnues.

À partir de ce système, se ramener à une seule équation faisant intervenir une seule inconnue (celle
demandée par l’énoncé).
(Utiliser la méthode de substitution ou combinaison linéaire ...)

R On peut aussi simplifier d’abord autant que possible le circuit initial en s’inspirant de la méthode 1, puis se
ramener alors à la méthode 2, si l’on ne peut pas se ramener à un générateur unique aux bornes de D.

R Si les dipôles passifs présents dans le circuit ne sont que des résistors, l’équation à résoudre sera
polynômiale (et du premier ordre).
Par contre, si il y a des condensateurs ou des bobines pour lesquels le lien entre tension et courant est de
nature différentielle, l’équation que l’on sera amener à résoudre sera alors elle aussi différentielle.
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