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m Dérivées en physique
-

@ /" Fiche méthode Sciences physiques

On ne traite ici que le cas des fonctions a une seule variable.

Dérivée premiere

Rappel : qu’est-ce qu’une dérivée en f(z)
mathématique ?

La dérivée d’une fonction x — f(z) prise

(0 + Awx)+-
en z = a correspond 2 la limite du taux de JAG-+)
variation de f au voisinagede x = a :

/ _ fla ;
f'(a) Jim [ VY 7

[0 20) = J)]
Az—0 x

- J

® f/(a) est la pente de la tangente i la courbe de [ en v = a.

Notation de la dérivée premiére

o (AN (df
fla)= Jim, (ml_a - (da)x_a

le "d" représentant une différence infinitésimale :

— pour "df" : différence entre entre les deux valeurs de f correspondantes

Pour désigner plus généralement la fonction f” :

_4

!
f_da:

— pour "dz" : différence entre deux valeurs de z infiniment proches au voisinage de a,

® L’intérét de cette notation est de garder a l’esprit qu’une dérivée est un taux de variation ''limite'".

Conséquence : variation infinitésimale de f On pourra écrire : | df = f'(z) dx

ce qui signifie qu’a une

variation infiniment petite (ou infinitésimale) dx de la variable = correspond une variation infinitési-

male df = f'(x) dz de la fonction f.

d.
® — correspond a ’opérateur "dérivée par rapport a x"

dx
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Dérivée seconde

Notation de la dérivée seconde

La dérivée seconde d’une fonction correspond a deux dérivations successives, donc on applique deux fois

o= (&)..

d2
que I’on notera plus simplement : | f”(a) = (é)
dx r=a

o srateur dérive 0 -
opérateur dérivée — :
7

. . d?
Ou encore, pour désigner plus généralement la fonction f” : | f” = d—“é
g8

Généralisation

Dans le programme de physique de classe préparatoire, on aura rarement 1’occasion d’aller au dela de la dérivée
seconde. Mais néanmoins, on peut généraliser de la maniere suivante :

Notation de la dérivée nieme

£ (q) = (d"f> ) PO

dan ~ dzn

Autre notation

Si y est une fonction de la variable temporelle ¢, on pourra noter ses dérivées successives : ¢, ¥, ...

Dérivée de vecteur

Pour exprimer la variation d’un vecteur par rapport au temps par exemple (ou tout autre variable), on pourra
utiliser la méme définition que précédemment.

Différence cruciale et fondamentale avec la dérivée d’une fonction scalaire :

11 faut préciser par rapport a quel référentiel on évalue la dérivée d’un vecteur ! !

Exemple : imaginons une fleche disposée sur un manege et symbolisant un vecteur 7 (donc de norme constante
ici). Alors, du point de vue d’un observateur fixe sur le manege :

iV
dt
Rmanege
car de son point de vue, la fleche ne change ni de norme, ni de direction, ni de sens. C’est donc un vecteur
constant.
Mais pour un observateur fixe sur le sol a c6té du manege :

AN
dt
Rsol

car de son point de vue, mé&€me si la norme est constante, le vecteur change en permanence de direction, donc
c¢’est un vecteur non-constant.
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r
m Notion d’intégrale en physique
-

Dans cette fiche, nous expliquons comment un physicien "voit" I’intégrale.
Pour cela, partons d’un exemple simple.

Position du probleme

On considere une voiture avancgant en ligne droite avec une accélération constante de norme ag. A 1’instant initial
t = to, elle possede une vitesse nulle. v évolue donc linéairement avec le temps : v(t) = ag(t — o).

On se demande quelle est la distance D parcourue au bout d’une durée 7.

Si la voiture avancait a vitesse constante vy, la réponse serait simple : D = vg7. Mais justement, la vitesse n’est
pas constante ici, on ne peut donc pas utiliser cette relation.

Discrétisation
: . T
On découpe le parcours en NV petit parcours de durée At = N chacun.

On définit alors les instants : ¢ = tg + kAt, ol k est un entier compris entre 1 et V.
Pour estimer D approximativement, on considére qu’entre 51 et ¢y , la vitesse reste constante et vaut v(tg_1).
Alors, la durée Dy, parcourue sur cet intervalle de temps est : Dy, = v(t_1).At

Par cette méthode, on en déduit approximativement la distance totale :

N N
D~Dy+Dy+..+D, = ZDk = Zv(tkfl).At
k=1 k=1
Interprétation géométrique
'l,'(t) = (lo(t o f())
Dy = v(tg—1).At 44 Effectuer la somme :
N N
D~ ZDk = Zv(tk—l)-At
o AL k=1 k=1
revient donc a calculer la somme des aires de
| | " chaque rectangle bleu sous la courbe de v(t).
to b= to+T - ’

Passage a la limite

Le résultat sera d’autant moins approximatif que la segmentation est fine. Il faut donc passer a la limite N — oo
et donc At — 0:

N
’U(tk_l).At Atj)() D
k=1
On admet également que :
N to+7
te_1). At —> t)dt
ZU( k 1) At—0 to U( )
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Ce sera démontré en cours de mathématique de deuxieéme semestre.

to+7
Donc, par unicité de la limite : D = v(t)dt
to

( )
En passant a la limite, on dit que 1’on passe d’une somme discrete de contributions Dy, a une somme

continue et infinie de contributions élémentaires 6 D = v(t)dt, ou dt¢ représente une variation infinitési-
male du temps :

to+T1 to+T7
D= 6D = v(t)dt

to to

Interprétation géométrique
En passant a la limite At — 0 et N — oo, D tend a devenir exactement 1’aire sous la courbe de v(t) entre
to ety + 7.

® Dans I’exemple précédent, il n’y a plus qu’a terminer le calcul intégral, sachant v(t) = ao(t — tg) :

to+7 to+T
a 0
D= ao(t — to)dt = [—OtQ - aot} = .
to 2 to

/" Méthode : calcul intégral

Pour les questions du type "calculer la quantité G entre les valeurs 1 et xs de la variable du probleme" :

Méthode Exemple

1. Exprimer la contribution élé- | On cherche la quantité totale de charge () qui peut étre débitée
mentaire G que 1’on peut asso- | par une batterie dont I’intensité varie suivant :
cier a G en fonction de la varia-
tion infinitésimale de la variable i(t) = Ioe™"/7 , 7 et I étant constants

du probléme, dz : o . o
La quantité élémentaire de charge §() débitée entre ¢ et t + dt

6G = f(x)dx vaut par définition :

2. Exprimer G comme la somme | Ici, les deux bornes d’intégrations sont I’instant initial ¢ = 0 (ou
continue des contributions élé- | la pile commence a débiter) et ¢ — co (la pile arréte de débiter,
mentaires dG : cad intensité nulle, lorsque ¢ — co0). D’ou :

G:/:QéG:/:f(x)dx Q:/OooéQ:/Oooi(t)dt:/Ooofoe_t/Tdt

3. Faire le calcul de I'intégrale

Q= [—Iore_t/TKo = IpT
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m Résoudre une équation

différentielle du premier ordre
-

| Equations différentielles du 1er ordre sans second membre

r

~\

Forme de I’équation et solution générale

e En physique, on rencontre souvent ce type d’équation qui se met sous la forme : | ' + Af = 0|ou f est

une fonction de la variable ¢, et A est une constante.

d,
En notation différentielle, elle s’écrit : d—j; +Af=0

e La solution est du type | f(t) = K e ™| ol K est une constante que I’on détermine a 1’aide des

conditions initiales données.

Pour vérifier que I'on n’a pas fait d’erreur de signe, dans I’argument de I’exponentielle notamment, on peut
tester rapidement la solution en vérifiant que f' + \f vaut bien 0 .

Qu’est-ce que A ? = constante reliée aux parametres physiques intervenant dans la situation physique
étudiée.

(exemple du circuit RC' : on définit A = 1 = i)

T RC

Comment déterminer la constante X ? —> elle semble arbitraire, mais en pratique sa valeur est imposée car
initialement (cad, a t = 0) I’expérimentateur applique une contrainte fj au systeéme physique : fo = f(t = 0)
. On utilise cette égalité pour déterminer la valeur de K.

Si la variable est le temps ¢, on parle alors de condition(s) initiale(s).
Si la variable est une variable spatiale, on parlera plutot de condition aux limites ...

/" Méthode : Comment retrouver rapidement la solution générale ?

ffrAf=0 = f=-)Xf = L =-)

/
Donc les primitives de = sont égales a celles de —\ a une constante pres &

f

/
Une primitive connue de — est In f.

Pour la fonction constante égale a —\, on peut choisir la primitive —Ax.
Donc :
Inf(z)=—-Xx+C

ou C est une constante.

Pour remonter a I’expression de f, il suffit d’appliquer la fonction réciproque du logarithme, cad, la fonction
exponentielle :
f(l’) _ e—)\a:—i-C _ e—)\z % 6C

Comme C' est une constante, on peut définir la constante K = ¢“ , de sorte que : f (x) =K e e

1 N.Gaudouen



Il Equations différentielles du 1er ordre avec second membre

r

.

e Se met sous la forme :

ol g est une fonction connue.

e La solution est du type | f(t) = K e~ + solution particuliere| ou K est une constante que 1’on
détermine a 1’aide des conditions initiales données.

Il faut donc connaitre une fonction qui soit solution particuliere de 1’équation (n’importe laquelle convien-
dra).

N\

Forme de I’équation et solution générale

®

®

®

On dit que "la solution générale d’une équation différentielle linéaire est la somme d’une solution
particuliére et de la solution générale de I’équation homogéne associée (cad, équation sans second membre
correspondante)’.

1
39

Si la fonction g est constante, une solution particuliére trés simple est : fpqr+ = \

On se trouvera majoritairement dans ce type de cas.

Si la fonction g n’est pas une constante, chercher une solution particuliere qui a la méme forme que g.

En physique, en général, ce genre de situation se présentera uniquement lorsque g sera de type sinusoidal :
g(t) = Asin(wt + ¢)

1l faudra alors chercher une solution fpar également sous forme sinusoidale : fpari(t) = A’ sin(wt + ¢)

2 N.Gaudouen
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mr
m Projections de vecteurs

.

Rappel : produit scalaire

Application aux vecteurs d’'une base orthonormée
=

Uz x
Produit scalaire entre deux vecteurs QT; 17% - 1 @Tx} @ - 0 1
A.B = [4]| x ||B|| x cos(A, B) w = 1 7T = 0 [
i = — 5 .
wy .ty = 1 Uy . Uz

= 0 jh———

-

® Les vecteurs d’une base orthonormée sont de norme 1 et orthogonaux entre eux.

Bilinéarité du produit scalaire

Soient A et y deux réels. Alors :

A.0B+uC)=24d.B+uA.C

Projection d’un vecteur dans une base orthonormée

( )

Projection d’un vecteur dans une base orthonormée

Dans une base orthonormée (&) notée (17% , zT; , @)) , supposons que le vecteur Z se décompose de la
maniere suivante dans cette base :

Ay
A= +ta,@+at=] a
ay
En utilisant la bilinéarité du produit scalaire, on obtient alors :
A.a = a
4.2 = a
A.w@ = a
. J
( )

Utilisation d’une base orthonormée pour exprimer un produit scalaire

De méme, par bilinéarité du produit scalaire :

Z . ﬁ = agzb; + ayby +a,b,
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m . .-
m Bases de projection et

coordonnées

.

Choix de la base de projection

Une base de projection est un outil permettant de projeter des équations vectorielles pour obtenir un en-
semble d’équations scalaires plus faciles a manipuler.
En physique, on choisira toujours des bases orthonormées directes car plus simple a utiliser.

Une fois que le référentiel a été choisi pour rendre 1’étude du mouvement la plus simple possible, il faut
choisir une base de projection : notamment, celle dans laquelle les vecteurs vitesse et accélération s’ex-
primeront de la maniére la plus simple possible.

ATTENTION!!!

Ne pas confondre ''base de projection' et ''référentiel"’

Dans un référentiel d’étude donné, on peut choisir n’importe quelle base de projection.

Une base fixe : les coordonnées cartésiennes

C’est la base la plus naturelle.

Elle est constituée d’un point fixe et de vecteurs unitaires fixes dans le référentiel d’étude choisi. &

Base FIXE | (u, ), u})
Coordonnées de M (t) | (z(t),y(t), z(t))

Vecteur position OM\ = xup + yz?y + zul =

INI SO

dOM = dow + dyw, + dz}

Déplacement élémentaire Zx

Y 3

dz gz
5
Vitesse | ¥ = dig + yuy + 2ui = | ¢
Z
5
Accélération | @ = iug + juy + Fui = | i
f

L J
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Une base mobile : les coordonnées cylindriques (ou cylindro-
polaires)

Cette base mobile dépend directement de la position du point 1/ étudié.

Base MOBILE | (u;(M), ug (M), u3)
Coordonnées de M (t) | (r(t),0(t), z(t))
u
r(t) ‘ —>
Vecteur position OM = L + 2 N Yg
A M’ e
1 u
r
Déplacement élémentaire d(W = dru; + rd0ug + dzul ) >
it —> y
: u
0(t) T8
Vitesse | T = rup + rou) + ul HN i
X t
PN . .
Accélération fL o (r i ) E (2r0 v r9> @ +
Zul

® Le vecteur T} est défini a posteriori de telle sorte a ce que (., U}, U} ) forme une base vectorielle directe.

Cas d’un mouvement circulaire uniforme
autour de I’axe (Oz) de rayon R constant de vitesse angulaire constante 6 = ) :
2

7 = ROmW ﬁz_mwz%m

Formules importantes a connaitre et a savoir retrouver

@, dm

vt @
aw - W dt

= 0@ = _Ur E

Y - _
o vu:

& Ici, les dérivées s’effectuent par rapport a une base cartésienne fixe (O, uy, i), %)

Coordonnées polaires
Lorsque le mouvement est plan, s’effectuant a > constant, on parlera plutét de base polaire (O, ;. u})
et de coordonnées polaires (r,0) . (Par exemple, pour un mouvement circulaire...)

2 N.Gaudouen
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mr
m Notions de base de cinématique

.

Relativité du mouvement - Notion de référentiel

f

La nature d’un mouvement dépend toujours de la situation de celui qui I’observe !
Il faudra donc toujours préciser le référentiel dans lequel est étudié le mouvement.

Définition
On appelle référentiel, un systeme d’axes lié a un observateur, ce dernier

étant muni d’une horloge. On peut ainsi repérer et suivre 1’évolution de la
position du point matériel dans I’espace au cours du temps.

® Par définition, I’observateur est immobile dans ce référentiel.

Choix du référentiel d’étude

Pour étudier le mouvement d’un mobile, le référentiel d’étude doit &tre choisi de maniere a ce que le
mouvement puisse étre décrit de la maniere la plus simple possible.

Par exemple, pour le mouvement des planetes, on se placera dans le référentiel héliocentrique. Pour le
mouvement des satellites terrestres, on se placera dans le référentiel géocentrique. Pour étudier la chute
d’une pomme, on se placera dans le référentiel terrestre. Etc.

Description du mouvement dans un référentiel donné

Vecteur position et vecteur déplacement élémentaire

point fixe

Le vecteur position O M (t)) permet de donner la position de
0

M au cours du temps par rapport au point O, considéré fixe dans le
référentiel d’étude.

OM( OM(t +dt)

Entre deux instants infiniment proches ¢ et t 4 dt, le vecteur dépla- ™ Y
cement élémentaire donne le déplacement infinitésimal du point k
M entre ces deux instants : M(tj

M(t+ dt).—

vecteur déplacement élémentaire = M (¢) M (t + dt
—
U

On remarque que si O est un point fixe du référentiel considéré :
M(t)M(t + dt) = OM(t + dt) — OM(t) = variation infinitésimale du vecteur OM = dOM (t)

Done, M(t)M(t + dt) = dOM (t)

® Le point fixe choisi n’est pas nécessairement l’origine du repére dans lequel on travaille, mais ce sera
généralement le cas ...

1 N.Gaudouen
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.4

Vecteur vitesse
Par définition, le vecteur vitesse du point matériel évalué

< e s ; Si O est un point fixe dans R :
a I’instant ¢ dans le référentiel R est :

dOM (t)
2 () = (M(t)M(t+dt ) T (t) = <dt>R
R

dt

Siil n’y a pas d’ambiguité concernant le référentiel utilisé, on pourra alléger la notation :

M (t)M(t + dt) _ dOM(t)

v(t) = dt dt

Propriétés

e On peut écrire : M (t)M(t + dt) = dOM = ¥ dt

e T (t) est toujours tangent 2 la trajectoire au point M (t)

e U est indépendant du point fixe choisi.

——
dOM  dO'M
En prenant deux points fixe O et O’, on montre aisément : Tz - o

Vecteur accélération
Par définition, le vecteur accélération du point matériel
évalué a I’instant ¢ dans le référentiel R est :

2011
@ () = (‘W/R“)> () = (dt(t))n
R

Si O est un point fixe dans R :

dt

Siil n’y a pas d’ambiguité concernant le référentiel utilisé, on pourra alléger la notation :

_dT(t) _ d*OM(t)

@) dt dt?

On montre aisément (comme pour ') que @ est indépendant du point fixe choisi.

Quelques définitions
Trajectoire du mouvement : courbe reliant les positions successives de M.

L’équation horaire du mouvement donne le vecteur position O Y (t) a chaque instant.

& Il ne faut pas confondre équation de la trajectoire et équation horaire du mouve-
ment.

Ny

-@' Si on connait 1’équation horaire du mouvement, on peut en déduire 1’équation de la

trajectoire, mais la réciproque est fausse.

Mouvement uniforme : || 7'|| = cte

On n’a pas nécessairement : @ = constant : pour un mouvement uniforme, la

norme de 7 est constante mais la direction de @ peut varier (exemple du mouvement
circulaire uniforme)

2 N.Gaudouen
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mr
m Tension et courant électrique

.

| Latension électrique

r

On appelle tension, ou différence de potentiel, la grandeur mesurée par un
voltmetre entre deux points A et B. Elle s’exprime en volt (V). /) /

On note les tensions avec la lettre U et les potentiels avec la lettre V.

La tension U 45 mesurée entre deux points A et B d’un conducteur est :

Uap=Va—-VB

Sur un schéma, on symbolise la tension U 45 par une fleche allant de B vers A.

A B A B
Upg = Va- Ve Uga=Vg-Va
Ung = - Upa

N1, . . P 0 2 9 9 . N ~
'@' Physiquement, une tension électrique est représentative d’une force qui tend a déplacer les porteurs

de charges (les électrons dans le cas des métaux, les ions dans le cas d’une solution, etc) dans un sens ou
dans I’ autre suivant le signe des charges.
Cette force est appliquée a 1’aide d’un champ électrique provenant d’un générateur.

Orientation d’une tension

Pour étudier un dip6le A B, on peut tout aussi bien définir sa tension U par U = Uap ou U = Up 4, ¢’est
un choix arbitraire qui ne changera en rien les résultats physiques.

1l faudra étre vigilant et penser a adapter ['utilisation des relations courant-tensions suivant les choix
effectués. Se reporter notamment a la fiche "Convention récepteur et générateur”.

Par exemple, la loi d’Ohm en convention récepteur est U = Ri. Mais si on choisit de I’étudier en inversant
le sens de la tension, donc en convention générateur, alors il faudra écrire : —U = Ri

1 N.Gaudouen



Le courant électrique

L’effet d’une tension étant de déplacer les porteurs de charges, il en résulte un mouvement global de ces porteurs

qu’on appelle courant électrique.

Sens du courant

Par définition, le sens du courant est le sens dans
lequel se déplaceraient des charges positives ce
qui équivaut au sens inverse du déplacement des
charges négatives.

Deéplacement reéel des électrons

Sensdu courant

( )

t R
A
1
i
1
1
1
1
1
1
1
1
i
£ m

Sens conventionnel du courant ;

Déplacementréel des électrons Déplacementréel des électrons

R

(Remarque : g, > 0)

Le sens conventionnel du courant est un choix arbitraire au méme titre que l’orientation des axes d’un

repere pour positionner un point dans l’espace.

Ci-dessus, on a choisi de I’orienter de A vers B (i = ia_, g) mais on aurait pu faire le choix inverse.

Le sens conventionnel du courant est algébrique : on n’a donc pas besoin d’indiquer constamment le sens
réel du courant dés lors que celui-ci nous est indiqué par le signe mathématique du sens conventionnel.

Intensité du courant

L 04
Cdt

Sens conventionnel du zouranti

porteurs de charges
positives se déplacant
dans le sens convention-
nel du courant

Sens conventionnel du courant i

— -
—d L
Tt I
—& <
—+ ,,"1—1.
—

Si pendant un intervalle de temps dt, la section du conducteur est traversée suivant le sens conventionnel
du courant par une quantité algébrique de charges dq, alors I'intensité du courant électrique vaut :

porteurs de charges
positives se déplacant
dans le sens contraire
au sens conventionnel
du courant

Déplacement global des porteurs de charges DOl’lC o 6q > 0 Déplacement global des porteurs de charges DOnC . 6(1 < 0
. 0q . 0q
Donc:|2=— >0 Donc:|2=— <0
dt dt
- ] porteurs de charges né- E— -
Sens conventionnel du zouranti . . Sens conventionnel du —ourant i porteurs de charges ne-
— gatives se déplacant . ;
= g . - o gatives se déplacant
T o= dans le sens contraire _ T 3 i
B - . - dans le sens convention-
—= - au sens conventionnel = | -
= —— N == nel du courant
du courant —
Déplacemant global des porteurs de charges Donc . 6(] > O Déplacement glohal des porteurs de charges DOHC . 5q < 0
0q dq
Donc:|2=— >0 Donc:|2=— <0
dt dt
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|
m Loi des mailles et loi des nceuds

Loi des mailles

( )
On choisit arbitrairement un sens de rotation dans la maille
ABCDE. Si une tension d’une des branches de la maille est
orientée dans le méme sens de rotation, on I’affecte d’un signe +,

sinon d’un signe — .

La somme des tensions des branches affectées de leur signe est
égale 2 0 :

U —Us—Us+ Uy +Us=0

® La loi des mailles est une conséquence de I’additivité des tensions.

u, Uy
< A <
P , s [ | [ ]
Sur le schéma ci-contre, on peut trés bien — —
appliquer la loi des mailles sur la "grande
maille” sans avoir a se préoccuper de la "
branche AB : s °
UL+ us —ug — ug +us —ug =0
— B —_—
Uy Us
Loi des nceuds
( )

On affecte d’un signe + les courants qui arrivent vers le nceud NV,
et d’un signe — ceux qui en partent.

La somme des intensités affectées de leur signe est égale a 0 :

t1+i2—i3+ia—i5=0

N

Autre formulation possible et plus facile :

somme des courants arrivant en N = somme des courants repartant de N
ici: 41+i2+1% = i3-+15

® La loi des neeuds est une conséquence de la conservation de la charge.
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m Puissance et énergie échangées
par un dipdle

.

I Puissance d’un dipdble - conventions générateur et récep-
teur

Le sens conventionnel du courant traversant un dipdle ainsi que I’ orientation de la tension a ses bornes relevant
d’un choix arbitraire, il existe deux types de conventions possibles pour décrire un dipdle.

Elles sont liées aux notions de puissance recue P, par le dipdle de la part du reste du ciricuit, et de puissance
cédée P. par le dipdle au reste du circuit, et qui est I’opposé de la puissance recue.

Convention récepteur Convention générateur

tension X intensité = puissance recue tension X intensité = puissance cédée

—{ —

D — _
u
u
Puissance regue : 12, = w1 Puissance cédée : B, =wi
Puissance cédée : P.=—u1 Puissance regue : P.=—-u1

Il Caractere générateur ou récepteur d’un dipole

— Un dipoéle se comporte comme un récepteur si (Donc, si P, < 0)
— Un dipole se comporte comme un générateur si (Donc, si P, < 0)

NE PAS CONFONDRE "convention générateur (resp. récepteur)" et "caractere générateur (resp. récepteur)" !

Ce n’est pas parce qu’un dipdle est représenté en convention générateur (resp. récepteur) qu’il se comporte
nécessairement comme un générateur (resp. récepteur) !

Une résistance R vérifie la loi d’Ohm, en convention récepteur : u = Ri.
Donc P, = Ri?, la puissance recue est toujours positive. Une résistance se comporte donc toujours comme

un récepteur.

Ce n’est pas le cas des condensateurs et des bobines qui peuvent aussi bien se comporter comme des
générateurs que comme des récepteurs.

1 N.Gaudouen



Relation entre puissance et énergie

\

N

r

Puissance recue et énergie recue

Pour un dipole recevant la quantité élémentaire d’énergie 6V pendant un intervalle de temps dt,
la puissance recue est :

oW
P=—
dt

Donc : W = P,dt

L’énergie totale recue par un dipdle entre deux instants ¢; et to est donc :

t2 t2
W = oW = P.dt
t1 t1
-
1 t2
- Si le dipdle est en convention récepteur, alors : W = utdt.

t1

Energie fournie par un dipole

Comme il s’agit de grandeurs algébriques, 1’énergie fournie par un dipdle est I’opposée de
I’énergie recue :
to to
énergie fournie = — P.dt = P.dt
t1 t1

' . N . o, L . . t2 .
- Si le dipble est en convention générateur, alors : énergie fournie = uidt.
t1
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m Dipéles passifs

Résistor de résistance R
Relation courant tension en convention récepteur :
N\
\ O\ . R
\&\ T
R N\

2 u
i . N . . u
A Puissancereque a: P, =u X i = Ri’=— >0

Bobine d’inductance L

Relation courant tension en convention récepteur :

di — N
u=L— I
dt U
di dE 1
Puissance recue : P, = Lid—z = d—tL ou: Ep(t)= §Li2 énergie stockée a ¢

. L e L . .
® La puissance P, = T ne pouvant étre infinie, cela implique que E7y, est une fonction continue du

temps. Donc i(t) est une fonction continue du temps pour une bobine.

Condensateur de capité C

c
Un condensateur de capacité C' est tel que . Al ]
i

Cela sera surtout exploitable avec la définition de I'intensité : i = @

dt N

u

Pour le condensateur, la quantité de charge dQ) recue pendant dt est égale a la
variation de la charge ¢(t) : 6Q) = q(t + dt) — q(t) = dq

T

. d N . . L
, ! Donc i = d—? D’ou la relation courant tension en convention récepteur :
il

o
! di

d dFE,
Puissance recue : P, = Cud—zt = 2

N

1
o Ut Ec(t) = §CU2 énergie stockée a t

® La puissance P, = dtC ne pouvant étre infinie, cela implique que E¢ est une fonction continue du

temps. Donc u(t) est une fonction continue du temps pour un condensateur.
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m Modeles de Thévenin et Norton

.

Sources idéales de tension de courant

' \
Source de tension Source de courant
i i
E R . by
u > u u -
E
- J

Modeéle de Thévenin et Norton

Généralement, les générateurs réels ne sont pas idéaux et ont une caractéristique affine (ou, au moins, une portion
de leur caractéristique) :

énérateur
8 E pente=-R

® Puisqu’il s’agit d’un générateur, on utilise naturellement la convention générateur.

Il y a deux manieres équivalentes d’écrire I’équation de cette caractéristique, d’ott deux modeles possibles
permettant de représenter le générateur :

. E 1 1 E
1 R Ru 0 Ru ou 0 R
Modele correspondant : modele de Thévenin Modeéle correspondant : modele de Norton
-u/R R
E Ri 1
> _— | S
Y o,
N -—D
u u
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m Déterminer une tension ou

intensité

.

On rencontre souvent ce type de question :

, . . oA , N

"Déterminer la tension u aux bornes du dipole D' ’,——<‘L\A i? o

' 7T PEY o3
1 1 - \
ou alors : "Déterminer lintensité i traversant le dipole D" e [D:| u?
4 - - \ _ s-/l

N A . . A « .. L . sl _ i
ou D peut étre n’importe quel type de dipdle linéaire (résistor.

condensateur, bobine ou générateur linéaire) et les circuits annexes
sont également constitués de dipdles linéaires.

1ére méthode (HP) : ramener le circuit a une seule maille

Cette méthode marche uniquement lorsque les dipdles passifs présents dans les circuits annexes sont des résistors
(les autres dipoles étant soit des sources de tension, soit des sources de courant).

f /‘ Méthode

1. Simplifier le circuit jusqu’a aboutir a un générateur de Thévenin unique alimentant le dipdle D.

Pour cela :
(a) soit utiliser les regles d’associations des résistances i
et des générateurs linéaires. Req
& Lors de la simplification du circuit, il faut u?
bien siir laisser intacte la branche contenant D ! E.q T

(b) soit utiliser le théoreme de Thévenin.

2. Appliquer la loi des mailles pour déterminer u. Se servir de la relation courant-tension du dipdle
D pour déterminer 7.

N ! 7 . o) ol . . .
'@' Si D est un résistor de résistance R, on peut aussi directement appliquer la formule du pont

diviseur de tension :

R

=" F
R + Req

U eq

On peut aussi se ramener a un générateur de Norton a l'aide de
I’équivalence Thévenin-Norton.
Dans ce cas, utiliser la loi des noeuds, pour déterminer 1 et la i?
relation courant-tension pour déterminer u.

u’?

N ! 7/
-@- Si D est un résistor de résistance R de conductance G = 1/R, |eq TE ) Req

on peut aussi directement appliquer la formule du pont diviseur

de courant : 1 = ————1
G+ Gey 1
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2eme meéthode : utilisation de la loi des mailles et la loi des
noceuds

Cette méthode se base sur le fait qu’il faut autant d’équations que d’inconnues. La loi des mailles, la loi des
nceuds et les relations courant-tension des dipdles sont autant d’équations qu’il est possible d’écrire. Mais il ne
faut pas tomber dans le piege d’introduire une intensité inconnue sur chaque branche et une tension inconnue
aux bornes de chaque dipole : cela ferait écrire trop d’équations a résoudre et la clarté du raisonnement en patira,
sans compter le risque accru de faire des erreurs de calcul.

Il vaut donc mieux introduire des inconnues au fur et a mesure lorsque cela est vraiment nécessaire et avancer
méthodiquement pas a pas en suivant la méthode ci-dessous :

r f Méthode
1

. Appliquer la loi des nceuds autant de fois que possible.

S g ,oni uira au fu d su S Sités 1 ues sur les s du
Lors de cette étape, on introduira au fur et a mesure des intensités inconnues sur les branches d
circuit en appliquant successivement la loi des nceuds directement sur le schéma du circuit, afin de ne
pas avoir a introduire des intensités inconnues "superflues" :

2. Appliquer la loi des mailles.
'\@/‘ Attention : certaines lois des mailles ne sont pas utiles. C’est le cas lorsque [’on I’applique

sur une maille englobant deux autres plus petites : la relation obtenue n’est que la somme des deux
relations que [’on obtient en appliquant la loi sur les deux petites mailles, et n’apporte donc pas de
nouvelle "information"...

N DR P . . . 0 A 5 .
'@' Pour ne pas avoir a définir des tensions inconnues aux bornes de chaque dipdle, si cela alourdit

trop le raisonnement, on peut utiliser simultanément les relations courant-tension des dipoles lors
de application de la loi des mailles.

3. Utiliser les relations courant-tension des dipdles.
& Faire attention a la convention utilisée !

N2 . P . . « A A
'@' Ne pas oublier que I’on connait la relation courant-tension du dipole D, donc on connait une

équation supplémentaire reliant i et u.

4. On dispose alors d’un systeme d’équations.
Sz L. 5. 5 2 . I
'@' Vérifier qu’il y a autant d’équations que d’inconnues.
A partir de ce systeme, se ramener a une seule équation faisant intervenir une seule inconnue (celle

demandée par I’énoncé).
(Utiliser la méthode de substitution ou combinaison linéaire ...)

® On peut aussi simplifier d’abord autant que possible le circuit initial en s’inspirant de la méthode 1, puis se
ramener alors a la méthode 2, si ’'on ne peut pas se ramener a un générateur unique aux bornes de D.

® Si les dipdles passifs présents dans le circuit ne sont que des résistors, I’équation a résoudre sera
polynémiale (et du premier ordre).
Par contre, si il y a des condensateurs ou des bobines pour lesquels le lien entre tension et courant est de
nature différentielle, I’équation que 1’on sera amener a résoudre sera alors elle aussi différentielle.
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