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Introduction
Étudiantes et étudiants,

Après un cursus au lycée, vous vous apprêtez à rentrer en classe préparatoire aux grandes écoles. Le rythme
de travail sera très soutenu, les cours d’une densité beaucoup plus importante. Votre capacité de travail ainsi
que votre efficacité seront des éléments essentiels de votre réussite. Ce stage vous propose les points essentiels
de révisions ainsi que quelques notions nouvelles pour bien commencer votre rentrée en classe préparatoire aux
grandes écoles.
Durant cette semaine de travail, nous allons traiter dans l’ordre les chapitres suivants :

— Fonctions usuelles et réciproques
— Équations différentielles
— Suites et Récurrence
— Nombres complexes
— Nombres réels et Systèmes linéaires

En vous souhaitant un agréable stage,

L’Équipe de Mathématiques
de Cours Thalès.



Fonctions usuelles
et réciproques
Fiche de cours

1. Bijection : Définitions

Définitions et propriétés

Dans la suite, on supposera que E et F deux ensembles et que f est une application :

f : E −→ F
x 7−→ f(x)

Si A ⊂ E, on appelle image de A par l’application f le sous-ensemble de F défini par :

f(A) = {f(x) ∈ F ;x ∈ A}.

Définition 1. Image

Soit I, J deux intervalles de R. u et v deux fonctions à valeurs réelles définies respectivement sur I
et J tels que u(I) ⊂ J .
On définit la fontion composée v ◦ u par :

u ◦ v : I −→ R
x 7−→ u(v(x)) .

Définition 2. Composition

La fonction f est dite bijective si l’une de ces propriétés équivalentes est vérifiée :
• Pour tout y ∈ F , l’équation f(x) = y d’inconnue x ∈ E admet une unique solution.
• Il existe une application g de F dans E tel que fog = idF et gof = idE .

Dans ce cas, g est unique, et appelée fonction réciproque de f et se note f−1.

Définition 3. Bijection
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Conseils méthodologiques

Déterminer la réciproque d’une fonction bijective
Si f est une fonction bijective de E dans F alors f−1 est définie de F dans E. Pour déterminer l’image
d’un élément de F par f−1, on résout l’équation d’inconnue x dans E :

f(x) = y ⇐⇒ x = f−1(y).

Autrement dit f−1(y) est l’unique solution de l’équation f(x) = y.

2. Fonctions exponentielle et logarithme

Fonction exponentielle

La fonction exponentielle, notée exp, est l’unique fonction y dérivable vérifiant :{
∀x ∈ R, y′(x) = y(x)
y(0) = 1 .

Définition 4. Fonction exponentielle

1. exp est une bijection strictement croissante de R sur ]0,+∞[.
2. lim

x→−∞
exp(x) = 0 et lim

x→+∞
exp(x) = +∞.

3. ∀(x, y) ∈ R2, exp(x+ y) = exp(x)× exp(y).
4. exp est dérivable sur R et ∀x ∈ R, exp′(x) = exp(x).

Proposition 1.

Résoudre une équation avec une exponentielle
La résolution des équations d’inconnue ex ou ln x passe très régulièrement par le changement d’inconnue
X = ex ou X = ln x.



Fonction logarithme

La fonction logarithme népérien peut être définie comme l’unique primitive de x 7→ 1
x sur ]0,+∞[

qui s’annule en 1.
Notée ln, elle est donc définie sur ]0,+∞[ par :

ln(x) =
∫ x

1

1
t
dt.

L’application réciproque de ln est la fonction exponentielle c’est-à-dire

∀x ∈ R, ∀y ∈]0,+∞[, exp(x) = y ⇐⇒ x = ln y.

Définition 5. Fonction logarithme népérien

∀x, y ∈]0,+∞[, ln(xy) = ln(x) + ln(y).

Proposition 2.

ln est une bijection strictement croissante de ]0,+∞[ sur R.
De plus, lim

x→+∞
ln(x) = +∞ et lim

x→0
ln(x) = −∞

Proposition 3.

Dérivée d’une composée

Soit I et J deux intervalles de R, u : I −→ R et v : J −→ R deux fonctions tels que u(I) ⊂ J .
Si les fonctions u et v sont dérivables sur leur ensemble de définition alors u ◦ v est dérivable sur I et

∀x ∈ I, (u ◦ v)′(x) = u′ ◦ v(x)× v′(x).

Proposition 4.



3. Fonctions trigonométriques

Définitions et propriétés

Dans le plan muni d’un repère orthonormé di-
rect (O,−→i ,−→j ), on considère un cercle orienté
de centre O et de rayon 1. Soit x un réel et M
un point qui lui est associé.
On appelle cosinus de x et sinus de x les co-
ordonnées de M dans le repère (O,−→i ,−→j ).
Le point M est alors de coordonnées
(cos(x), sin(x)).

Définition 6. Fonctions sinus et cosinus

Les fonctions sinus et cosinus sont définies sur
R, 2π-périodiques.

∀x ∈ R, cos(x+ 2π) = cos(x) et
sin(x+ 2π) = sin(x).

De plus, la fonction sinus est impaire et la
fonction cosinus est paire.

∀x ∈ R, cos(−x) = cos(x) et
sin(−x) = − sin(x).

Proposition 5.

Les fonctions cosinus et sinus sont dérivables sur R et

cos′ = − sin et sin′ = cos .

Proposition 6. Dérivée des fonctions sinus et cosinus
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2 modulo
π, on pose :

tan θ = sin θ
cos θ .

Définition 7. Tangente d’un angle

La fonction tan, définie sur R−
{π

2 + kπ, k ∈ Z
}
est π-périodique et impaire. Pour tout k ∈ Z, elle

est dérivable sur Ik =
]
−π2 + kπ,

π

2 + kπ
[
et :

∀x ∈ Ik, tan′(x) = 1 + tan2(x) = 1
cos2(x) ;

elle est donc strictement croissante sur Ik et, en particulier, sur I0 =
]
−π2 ,

π

2

[
.

Théorème 7.

Courbe de la fonction tangente



— Pour tout réel θ 6≡ π

2 [π], on a :

tan(−θ) = − tan(θ), tan(π + θ) = tan(θ) et tan(π − θ) = − tan(θ).

— Pour tout réel θ 6≡ 0
[π

2

]
, on a tan

(π
2 − θ

)
= 1

tan(θ) .

Proposition 8.

Théorèmes

Les formules suivantes sont à connaître par cœur.

1. sin(a+ b) = sin(a) cos(b) + sin(b) cos(a);
2. sin(a− b) = sin(a) cos(b)− sin(b) cos(a);
3. cos(a+ b) = cos(a) cos(b)− sin(a) sin(b);
4. cos(a− b) = cos(a) cos(b) + sin(a) sin(b);

5. tan(a+ b) = tan(a) + tan(b)
1− tan(a) tan(b) ;

6. tan(a− b) = tan(a)− tan(b)
1 + tan(a) tan(b) .

7. sin(2a) = 2 sin(a) cos(a).
8. cos(2a) = cos2a − sin2a = 2cos2a − 1 =

1− 2sin2a.

9. tan(2a) = 2 tan(a)
1− tan2a

.

Proposition 9.



Les formules suivantes sont à connaître par cœur.

1. cos(a) cos(b) = 1
2 (cos(a+ b) + cos(a− b)).

2. sin(a) sin(b) = 1
2 (cos(a− b)− cos(a+ b)).

3. sin(a) cos(b) = 1
2 (sin(a+ b) + sin(a− b)).

4. sin(a) + sin(b) = 2 sin(a+ b

2 ) cos(a− b2 ).

5. sin(a)− sin(b) = 2 sin(a− b2 ) cos(a+ b

2 ).

6. cos(a) + cos(b) = 2 cos(a+ b

2 ) cos(a− b2 ).

7. cos(a)− cos(b) = −2 sin(a+ b

2 ) sin(a− b2 ).

Proposition 10.

4. Dérivation et fonction réciproque

Théorèmes

Considérons f une fonction dérivable sur un intervalle I de R telle que ∀x ∈ I, f ′(x) > 0. La fonction
f est alors bijective de I dans J = f(I) et sa réciproque f−1 est dérivable sur J et

∀y ∈ J, f−1′(y) = 1
f ′of−1(y) .

Proposition 11.



L’application tan :
]
−π2 ,

π
2
[
−→ R

x 7−→ tan(x) est continue sur l’intervalle
]
−π2 ,

π
2
[
, strictement crois-

sante, et lim
x→−π2

tan x = −∞, lim
x→π

2

tan x = ∞ ; l’application tan admet donc une réciproque, notée

Arctan : R −→
]
−π2 ,

π
2
[

x 7−→ Arctan(x) et Arctan est continue sur R. On a ainsi :

∀(x, y) ∈ R×
]
−π2 ,

π

2

[
, (y = Arctan(x)⇐⇒ x = tan y).

Arctan est impaire. Puisque tan est dérivable sur
]
−π2 ,

π
2
[
et que ∀y ∈

]
−π2 ,

π
2
[
, tan′ y = 1+tan2 y 6= 0,

Arctan est dérivable sur R et :

∀x ∈ R,Arctan′(x) = 1
tan′(Arctanx) = 1

1 + tan2(Arctanx)
= 1

1 + x2 .

Fonction Arctan

Conseils méthodologiques

Représenter une fonction réciproque
Les représentations des courbes de deux fonctions réciproques sont symétriques par rapport à l’axe y = x.

Calculer avec les fonctions réciproques
Attention, pour tout x réel, tan(Arctan (x)) = x (car l’Actant est définie sur R) mais Arctan (tan π) 6=
π. Il faut bien faire attention aux ensembles où les fonctions sont bijections. Par contre, on a toujours
Arctan (tan x) = x pour x ∈]− π/2, π/2[.



Équations différentielles
Fiche de cours

1. Équations différentielles linéaires du premier ordre

Théorèmes

Considérons l’équation différentielle suivante définie sur R :

(E0 ) y′ + λy = 0 où λ est une constante réelle.

La solution générale de (E0) est l’ensemble des fonctions définies sur R par

fC : x 7→ Ce−λt où C ∈ R.

Résolution d’une équation différentielle simple

Le but de cette partie est de résoudre les équations différentielles linéaire du premier ordre sous la forme :

y′ + a(x)y = b(x)

où a et b sont deux fonctions continues définis sur un intervalle I de R

Considérons l’équation homogène suivante définie sur I :

(E0 ) y′ + a(x)y = 0

La solution générale de (E0) est l’ensemble des fonctions définies sur I par fλ(x) = λe−
∫
a(t)dt =

λeA(x) où λ ∈ R et A est une primitive de a sur I.

Résolution des équations différentielles homogènes

La solution générale de l’équation différentielle

(E) y′ + ay = b

est la somme d’une solution particulière avec la solution générale de l’équation différentielle homogène
associée.

Résolution des équations différentielles
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Conseils méthodologiques

Savoir résoudre une équation différentielle
Vous devez savoir résoudre des équations différentielles «type» à l’aide des différents exemples et exercices
effectués.

Déterminer une solution particulière
Pour déterminer une solution particulière, énonçons plusieurs méthodes :

— (E) admet une solution évidente sous la forme du second membre.
— Principe de superposition des solutions. Si le second membre b se décompose de manière simple

en une combinaison linéaire de plusieurs fonctions de types variés b =
n∑
k=1

bk, on pourra déterminer,

pour chaque équation (Ek) y′ + ay = bk une solution particulière yk, puis
n∑
k=1

yk est une solution

particulière de (E).
— Méthode de variation de la constante (Méthode de Lagrange). En partant de la solution

générale de l’équation homogène sous la forme y = λe−A dans l’intervalle I, on fait "varier la
constante" en cherchant une solution particulière de l’équation différentielle sur I sous la forme :

y0(x) = λ(x)e−A(x).

En injectant la fonction dans l’équation différentielle, on obtient généralement une équation diffé-
rentielle plus simple d’inconnue la fonction λ.



2. Équations différentielles linéaires du second ordre

Théorèmes

Dans cette proposition, K = R ou C. Soient (a, b) ∈ K2. Considérons l’équation différentielle homo-
gène suivante :

y′′ + ay′ + by = 0

Considérons l’ équation caractéristique r2 + ar + b = 0 (inconnue r ∈ K) et son discriminant
∆ = a2 − 4b.

— 1° cas : L’équation caractéristique admet dans K deux solutions r1, r2 distinctes alors la
solution générale de l’équation homogène s’écrit sous la forme

y(x) = λ1e
r1x + λ2e

r2x

où (λ1, λ2) ∈ K2.
— 2° cas : L’équation caractéristique admet dans K une solution double r0 =

(
−a2
)
(c’est à dire

∆ = 0) alors la solution générale de l’équation homogène s’écrit sous la forme

y(x) = (λx+ µ)er0x

où (λ, µ) ∈ K2.
— 3° cas : L’équation caractéristique n’admet pas de solution dans K (c’est à dire : K = R,

∆ < 0 et deux solutions complexes conjugués : z = α ± iβ) alors la solution générale de
l’équation homogène s’écrit sous la forme

y(x) = (λ cos (βx) + µ sin (βx)) eαx où (λ, µ) ∈ K2

ou,

y(x) = A cos(βx− ϕ)eαx où (A,ϕ) ∈ R2.

Résolution des équations différentielles linéaires du second ordre homogène

Soient (a, b) ∈ K2 et g est une fonction continue définie sur I intervalle de R. Considérons :

(E) y′′ + ay′ + by = g

(E0) y′′ + ay′ + by = 0

La solution générale sur I de (E) est la somme de la solution générale de (E0) et une solution
particulière de(E).

Résolution des équations différentielles linéaires d’ordre 2

Pour déterminer une solution particulière avec un second membre particulier.

Soient m ∈ K, P ∈ K[X], h : I −→ K
x 7−→ emxP (x) . Il existe au moins une solution sur I de l’équa-

tion différentielle
y′′ + ay′ + by = h

de la forme y(x) = emxQ(x), où Q est un polynôme de degré :
— deg(P ) si m n’est pas solution de l’équation caractéristique
— deg(P ) + 1 si m est solution simple de l’équation caractéristique
— deg(P ) + 2 si m est solution double de l’équation caractéristique.

Théorème 1.



Déterminer une solution particulière
Pour déterminer une solution particulière, énonçons plusieurs méthodes :

— (E) admet une solution évidente sous la forme du second membre.
— Principe de superposition des solutions. Si le second membre b se décompose de manière simple

en une combinaison linéaire de plusieurs fonctions de types variés b =
n∑
k=1

bk, on pourra déterminer,

pour chaque équation (Ek) y′′+ay′+cy = bk une solution particulière yk, puis
n∑
k=1

yk est une solution

particulière de (E).
— Si le second membre est sous la forme emxP (x), chercher une solution sous la forme emxQ(x) où le

degré du polynôme Q dépend celui du polynôme P .

3. Récapitulatif des dérivées usuelles

Fonction f Dérivée f ′ Ensemble de définition
eαx, α ∈ C∗ αeαx R

cosx − sin x R
sin x cosx R

− ln | cosx| tan x R−
{
π
2 + nπ;n ∈ Z

}
ln | sin x| cotanx R− {nπ;n ∈ Z}

tan x 1
cos2 x

= 1 + tan2 x R−
{
π
2 + nπ;n ∈ Z

}
cotanx − 1

sin2 x
= −1− cotan2 x R− {nπ;n ∈ Z}

xα+1 (α+ 1)xα, α ∈ R− Z R∗+
ln |x| 1

x
R∗

Arctanx 1
1 + x2 R



Suites et
récurrence

Fiche de cours

1. Récurrence

Théorèmes

Soit E ∈ P (N) telle que :
{

0 ∈ E
∀n ∈ E, n+ 1 ∈ E , alors E = N.

Principe de récurrence

Soit n0 ∈ N et P (n) une propriété portant sur un entier n tel que n > n0. Pour que P (n) soit vraie
pour tout n de N tel que n > n0, il faut et il suffit que l’on ait :

• P (n0) est vraie
• Pour tout n de N tel que n > n0, si P (n) est vraie, alors P (n+ 1) est vraie.

Démonstration par récurrence

∀(a, b) ∈ C2,∀n ∈ N∗, (a+ b)n =
n∑
k=0

(
n

k

)
akbn−k.

Formule de binôme de Newton

Conseils méthodologiques

Utiliser le raisonnement par récurrence
Le principe de récurrence est un modèle de démonstration très utilisé en Mathématiques. Il a pour avantage
de simplifier les démonstrations des résultats difficiles mais pour inconvénient de connaître à priori le résultat
obtenu. La compréhension et la rédaction de ce principe est une des bases de votre apprentissage.

Utiliser la formule du binôme de Newton
La formule du binôme de Newton est très régulièrement utilisée. Il faut la connaître par cœur.
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2. Suites géométrique et arithmético-géométrique

Définitions et propriétés

Une suite (un)n dans R est dite géométrique si et seulement s’il existe r ∈ R tel que :

∀n ∈ N, un+1 = run.

L’élément r est appelé la raison de la suite géométrique (un)n.
On a alors : ∀n ∈ N, un = u0r

n.

Définition 1. Suites géométriques

Soit r ∈ R ; la suite géométrique (rn)n converge si et seulement si : |r| < 1 ou r = 1. De plus :
1. Si |r| < 1 alors rn −→

n→+∞
0

2. Si r ∈]1; +∞[ alors rn −→
n→+∞

+∞

Proposition 1.

Soit (un)n une suite dans R géométrique de raison différente de 1 donc il existe r ∈ R tel que :
∀n ∈ N, un+1 = run.

n∑
k=0

uk = u0
1− rn+1

1− r .

Proposition 2.

Il s’agit des suites (un)n de R telles qu’il existe (a, b) ∈ R2 tel que :

∀n ∈ N, un+1 = aun + b.

Si a = 1, il s’agit d’une suite arithmétique de raison b.

Définition 2. Suite arithmético-géométrique

Théorèmes

Considérons la suite (un)n définie par :

∀n ∈ N, un+1 = aun + b où a ∈ R− {1} et b ∈ R.

Alors avec λ = aλ+ b, on obtient que pour tout n de N,

un = an(u0 − λ) + λ.

Suite arithmetico-géométrique



3. Monotonie, limite et théorème d’encadrement

Définitions et propriétés

— Une suite réelle (un)n est dite majorée (respectivement minorée) s’il existe A ∈ R tel que
∀n ∈ N, un 6 A (respectivement A 6 un).

— Une suite réelle ou complexe (un)n est dite bornée s’il existe M ∈ R+ tel que : ∀n ∈ N,
|un| 6M .

Définition 3. Suite majorée, minorée, bornée

Soit (un)n une suite réelle.
• On dit que (un)n est (resp. strictement) croissante si et seulement si :

∀n ∈ N, un 6 un+1 (resp. un < un+1)

• On dit que (un)n est (resp. strictement) décroissante si et seulement si :

∀n ∈ N, un+1 6 un (resp. un+1 < un)

• On dit que (un)n est monotone si et seulement si (un)n est croissante ou (un)n est décrois-
sante.

Définition 4. Croissance, décroissance

Théorèmes

1. Toute suite réelle croissante et majorée est convergente.
2. Toute suite réelle décroissante et minorée est convergente.

Théorème de la limite monotone

Soient (un)n, (vn)n et (wn)n trois suites réelles telles que :{
∃N ∈ N tel que ∀n > N, un 6 vn 6 wn
(un)n et (wn)n convergent vers une même limite ` .

Alors (vn)n converge aussi vers `.

Théorème d’encadrement

Conseils méthodologiques

Utiliser le théorème de la limite monotone
Le théorème de la limite monotone est très important car il assure l’existence de la limite d’une suite
avant de pouvoir la calculer !



Utiliser le bon théorème
Dans le cours, il faut faire la différence entre deux types de théorème :

1. Théorème aboutissant à l’existence d’une limite : Théorème de la limite monotone (principal),
...

2. Théorème partant de l’existence d’une limite pour aboutir à la limite d’une autre suite :
Théorème d’encadrement, théorème sur la limite de somme, produit, ...

Étudier une suite où la puissance «varie»
Pour étudier la limite d’une suite sous la forme uvnn où un > 0 , il faut mettre la suite sous la forme evn lnun .

Utiliser la méthode du télescopage
La méthode du « télescopage »dans une somme est à retenir. De manière théorique, elle consiste à écrire
que :

n∑
k=0

(uk+1 − uk) =
n∑
k=0

uk+1 −
n∑
k=0

uk =
n+1∑
k=1

uk −
n∑
k=0

uk = un+1 − u0.

Déterminer la valeur d’une limite
Très fréquemment, si on sait qu’un suite qui vérifie une relation de récurrence converge, on passera à
la limite dans la relation afin d’obtenir une condition sur la limite.

4. Définition de la limite

Définitions et propriétés

— On dit qu’une suite numérique (un)n converge vers ` ∈ R si et seulement si

∀ε > 0,∃N ∈ N,∀n ∈ N, (n > N =⇒ |un − `| 6 ε)

— On dit qu’une suite numérique (un)n converge s’il existe un réel ` ∈ R tel que (un)n converge
vers `.

Définition 5. Convergence

Théorèmes

Si une suite numérique (un)n converge vers ` ∈ R alors la limite est unique. On notera alors
lim

n→+∞
un = `.

Unicité de la limite



Nombres Complexes
Fiche de cours

1. Formes algébrique, trigonométrique et exponentielle

Définitions et propriétés

Soit z ∈ C. Le module de z est le réel positif |z| =
√
Re (z)2 + Im (z)2.

De plus, pour tout nombre complexe non nul, il existe un réel θ unique à 2π près, appelé argument
de z et noté Arg(z), tel que :

z = |z|(cos θ + i sin θ).

Définition 1. Module

1. ∀z ∈ C, |z|2 = zz = zz.

2. ∀z ∈ C, |z| = 1⇔ z = 1
z

3. ∀z ∈ C, |z| = |z|
4. ∀(z, z′) ∈ C× C∗, |zz′| = |z||z′| et | zz′ | =

|z|
|z′|

Proposition 1.

1. ∀z ∈ C∗, Arg(z) = − Arg(z) [2π]
2. ∀(z, z′) ∈ C∗2, Arg(zz′) = Arg(z) + Arg(z′) [2π]
3. ∀n ∈ N,∀z ∈ C∗, Arg(zn) = n Arg(z) [2π]

4. ∀(z, z′) ∈ C∗2, Arg
( z
z′

)
= Arg(z)− Arg(z′) [2π]

Proposition 2.
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On note pour θ ∈ R :
eiθ = cos θ + i sin θ.

La forme trigonométrique d’un nombre complexe non nul z est l’écriture :

z = [ρ, θ] , ou encore z = ρeiθ , ρ ∈ R∗+ , θ ∈ R

Définition 2. Forme trigonométrique

Conseils méthodologiques

Utiliser l’écriture exponentielle d’un nombre complexe
L’utilisation de l’écriture exponentielle est à préférer pour simplifier les produits (quotients) de nombres
complexes. Pour la somme, il est recommandé d’utiliser l’écriture algébrique.

À l’aide de la proposition précédente, on obtient : eiθeiθ′ = ei(θ+θ′) et eiθ

eiθ′
= ei(θ−θ

′).

Utiliser la méthode de l’argument-moitié
La méthode de l’argument-moitié est à retenir :

eix + eiy = ei
x+y

2

(
ei
x−y

2 + e−i
x−y

2

)
= ei

x+y
2 × 2 cos

(
x− y

2

)

eix − eiy = ei
x+y

2

(
ei
x−y

2 − e−i
x−y

2

)
= ei

x+y
2 × 2i sin

(
x− y

2

)

2. Trigonométrie

Théorèmes

∀n ∈ N∗, ∀θ ∈ R, (eiθ)n = einθ ce qui donne la formule de Moivre :

(cos θ + i sin θ)n = cosnθ + i sinnθ

Formule de Moivre

Pour tout z complexe différent de 1,
n∑
k=0

zk = 1− zn+1

1− z .

Théorème 3.

Pour tout x réel,

cos(x) = eix + e−ix

2 et sin(x) = eix − e−ix

2i .

Formule d’Euler



Conseils méthodologiques

Linéariser de cosp(θ) et sinp(θ)
Pour linéariser cosp(θ) et sinp(θ),

— on remplace cos θ par eiθ + e−iθ

2 et sin θ par eiθ − e−iθ

2i ,

— on développe
(

eiθ + e−iθ

2

)p
et
(

eiθ − e−iθ

2i

)p
à l’aide de la formule du binôme de Newton pour

développer les formules d’Euler
— on regroupe les termes de la forme eikθ + e−ikθ = 2 cos kx ou eikθ − e−ikθ = 2i sin kx pour obtenir

le résultat.

Expression de cos(nθ) et sin(nθ) en fonction de cos(θ) et sin(θ)
Pour développer cosnθ ou sinnθ, il faut appliquer la formule de Moivre et ensuite la formule du binôme
de Newton en calculant :

cosnθ + i sinnθ = (cos θ + i sin θ)n =
n∑
k=0

(
n

k

)
cosn−k θ sink θik

Pour finir, il reste à déterminer la partie réelle de (cos θ + i sin θ)n pour obtenir la valeur de cos(nθ) et la
partie imaginaire pour obtenir la valeur de sinnθ.

3. Équations

Définitions et propriétés

— Si z ∈ C, on appelle racine n-ième de z tout Z ∈ C tel que Zn = z.
— Les racines n-ièmes de 1 sont encore appelées racines n-ièmes de l’unité.

L’ensemble des racines n-ièmes de l’unité est noté Un.

Définition 3. Racine n-ième

Soit n un entier naturel non nul.
Tout nombre complexe non nul admet, dans C, exactement n racines n-èmes deux à deux distincts
c’est-à-dire l’équation zn = Z d’inconnue z admet exactement n solutions dans C pour tout Z
complexe non nul.

Racine n-ième d’un nombre complexe non nul

Soient Z = X + iY ∈ C∗ et z = x+ iy ∈ C.

z2 = Z ⇐⇒

 x2 + y2 =
√
X2 + Y 2

x2 − y2 = X
2xy = Y

Résolution des équations z2 = Z dans C



Soit (a, b, c) ∈ C∗×C×C. Considérons l’équation az2+bz+c = 0, d’inconnue z ∈ C. Soit ∆ = b2−4ac
le discriminant du trinôme, on a :

— si ∆ 6= 0, alors l’équation admet deux solutions distinctes z1 et z2 :

z1 = −b− δ2a , z2 = −b+ δ

2a , où δ est une racine carrée complexe de ∆

— si ∆ = 0, l’équation a une unique solution, dite double :

z0 = −−b2a .

Les solutions, distinctes ou non, z1, z2 vérifient :

z1 + z2 = −b/a, z1z2 = c/a.

Résolution algébrique d’une équation du second degré dans C

Conseils méthodologiques

Résoudre une équation du second degré dans C
Soit (a, b, c) ∈ C∗ × C× C. Considérons l’équation az2 + bz + c = 0, d’inconnue z ∈ C.

1. On calcule ∆ = b2 − 4ac.
2. — si ∆ 6= 0, alors l’équation admet deux solutions distinctes z1 et z2 :

z1 = −b− δ2a , z2 = −b+ δ

2a ,

où δ est une racine carrée complexe de ∆ que l’on détermine à l’aide d’un système de trois équations
à deux inconnues.

— si ∆ = 0, l’équation a une unique solution, dite double :

z0 = − b

2a.



Nombres réels et
Systèmes linéaires
Fiche de cours

1. Nombres réels

Conseils méthodologiques

Savoir rédiger une récurrence
Pour rédiger une récurrence :

1. Pour n dans N, rédiger clairement la propriété P(n) au rang n.
2. Initialisation : On vérifie que la propriété est vraie au rang initial. Dans la plupart des cas, 0 ou 1.
3. Hérédité : On suppose que la propriété est vérifiée à un rang n. Le but est de montrer qu’elle est

vérifiée au rang n+ 1.
4. Conclure à l’aide du raisonnement par récurrence que la propriété est vraie pour tout entier n plus

grand que le rang d’initialisation.

Savoir majorer ou minorer des expressions
Il faut bien connaître les mécanismes qui permettent de majorer ou minorer des expressions. Voici quelques
exemples :

— Inégalité triangulaire
— Nombre réel au carré positif.

Exemple : (a+ b)2 = a2 + 2ab+ b2 > 0 implique −2ab 6 a2 + b2.
— Croissance ou décroissance des fonctions de référence
— Croissance de l’intégrale
— ...
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2. Systèmes linéaires

Conseils méthodologiques

Résoudre un système linéaire
À de rares exceptions près, l’algorithme du pivot de Gauss est à la fois le plus économique en termes de
calcul et le plus susceptible de conduire sans encombre au résultat correct.
Soit (S) le système

(S)


a11x1 + · · · + a1pxp = b1
a21x1 + · · · + a2pxp = b2

... · · ·
...

...
an1x1 + · · · + anpxp = bn

Posons A = (ai,j) ∈Mn,p(K) et B = (bi)i∈[[1,n]].
1. Opération sur la première colonne.

(a) Si a11 6= 0, alors on effectue les opérations pour tout i dans [[1, n]],

Li ← Li −
ai1
a11

L1.

La première colonne a alors uniquement sa première composante non nulle.
(b) Si a11 = 0 et qu’il existe i0 dans [[1, n]] tel que ai01 6= 0. On effectue alors L1 ↔ Li0 . Ainsi la

première composante de la première colonne est non nulle et on est ramené au cas précédent.
(c) Si la première colonne est nulle alors x1 est un paramètre de la solution du système linéaire.

2. Opération sur les colonnes suivantes.
On continue les opérations décrites précédemment en commençant par la ligne j de la colonne j pour
obtenir un système échelonnée par lignes.

3. On obtient un système triangulaire supérieure simple à résoudre en commençant par la dernière ligne
et en injectant les résultats trouvés dans les lignes précédentes de proche en proche.
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